
A Software Solution for Hardware Vulnerabilities
Komail Dharsee

Department of Computer Science
University of Rochester

Ethan Johnson
Department of Computer Science

University of Rochester

John Criswell
Department of Computer Science

University of Rochester

Abstract—Modern processors are becoming increasingly com-
plex with features that improve performance and add new
functionality. However, such improvements are a double-edged
sword: they improve performance and functionality but also
introduce security-critical bugs into the processor that attackers
can leverage to bypass a system’s security policies. Existing so-
lutions require hardware extensions and often lack the flexibility
of software. We present the design of a software-only solution
to prevent exploitation of these bugs. Our design builds on the
Secure Virtual Architecture and employs both static analysis and
run-time checks to prevent applications and operating system
kernels from triggering security-critical processor bugs. Our
evaluation examines security-critical processor bugs identified in
AMD processors and analyzes how they can be mitigated by our
design.

I. INTRODUCTION

Hardware bugs affect nearly all modern processors; some
such bugs introduce security vulnerabilities that attackers can
exploit. Exploitation can lead to classic privilege escalation [1]
and can violate compiler-enforced policies (such as Control
Flow Integrity [2]) by corrupting key hardware state (such
as the program counter [3]). Even new processors suffer
from hardware bugs. An example is Erratum KBL038 which
afflicts Intel’s Kaby Lake processors [4]. The bug affects
Intel’s MPX hardware technology which provides hardware-
accelerated memory protection. When triggered, this processor
bug causes the processor to incorrectly reinitialize the MPX
bounds registers, causing future bounds checks to pass re-
gardless of whether the pointer is in bounds. If triggered, the
processor will fail to enforce the security policies configured
by software.

Once discovered, hardware bugs are difficult to mitigate in
the field. Fixing a hardware bug requires replacing a physical
component which is costly and time-consuming compared to
software updates which can be performed automatically and
cheaply over a network. This cost is especially problematic
for mobile devices, large data centers, and cloud computing
systems.

We propose a software solution which enables cheap remote
software updates to mitigate new hardware bugs as they are
discovered. Specifically, we propose that processors be de-
signed, produced, and shipped in conjunction with the Secure
Virtual Architecture (SVA) [5], [6]. SVA is a compiler-based
virtual machine interposed between the software and processor
that abstracts away unnecessary processor details and, with
static analysis and compiler instrumentation capabilities, en-
forces security policies on software. When processor bugs are

discovered, processor manufacturers can ship software patches
to SVA to mitigate the new processor bugs. Our approach
builds security directly into the system by providing software
developers with an interface that is sufficiently expressive yet
capable of controlling how computation is executed on the
processor.

Devising a software-only solution requires solving several
challenges:

• Controlling Arbitrary Native Code: Current systems
allow users to execute arbitrary code on a system. Our
solution must provide a way to prevent such arbitrary
code from executing a sequence of instructions which
may trigger a processor bug.

• Handling Unbounded Malicious Instruction Se-
quences: Some processor bugs can be triggered through
an unbounded number of instruction sequences. Further-
more, malicious instruction sequences need not be a
consecutive series of instructions; some set of malicious
instructions interleaved with benign instructions may
trigger a processor bug. We need methods to efficiently
represent such infinite sets of instruction sequences and
ensure that a piece of code does not execute any instruc-
tion sequence in the set.

• Controlling Privileged and Unprivileged Code: In
addition to user space code, privileged code (such as
that running within the operating system kernel) may
also trigger processor bugs. Any solution must be able
to control both privileged and unprivileged code.

• Enforcing Higher-Level Security Policies: Instruction
sequences designed to trigger security-critical processor
bugs may not necessarily escalate privilege as defined
by the processor, e.g. improperly entering kernel mode.
Rather, they may disobey expectations of logical control
flow and data consistency required for enforcing higher-
level security policies, e.g. control flow integrity [2]
and software fault isolation [7]. For example, triggering
a processor bug might spuriously update the program
counter incorrectly [8], making control-flow integrity [2]
impossible to enforce. Comprehensive solutions must
address this wider set of security requirements.

A key insight of our approach is that it can protect against
hardware vulnerabilities by limiting the expressiveness of the
instruction set available to software in a way that prevents mis-
use of hardware features without compromising normal func-
tionality. This is done by leveraging the virtual instruction set



from previous work on SVA, which is adequately expressive to
encode existing programs (including operating system kernels,
such as Linux) [9], [5], while remaining sufficiently restrictive
to prevent some errors from being expressed. Remaining errors
are then addressed with static analysis and run-time checks [5],
[6].

The rest of the paper is organized as follows. Section II
discusses SVA and its capabilities in more detail. Section III
presents our design for addressing hardware bugs via software.
Section IV describes our preliminary study on thwarting
hardware bugs with SVA. Section V gives an overview of
an expected lower bound on the overhead of our system.
Section VI discusses related work, Section VII discusses future
work, and Section VIII concludes.

II. BACKGROUND

Our solution will leverage the Secure Virtual Architecture
(SVA) [5]. As Figure 1 shows, SVA is a compiler-based virtual
machine residing below the operating system kernel. All
software on an SVA system is compiled to a virtual instruction
set based on the LLVM Intermediate Representation (LLVM
IR) [10]. The original LLVM IR lacks instructions for low-
level operations needed by operating system kernels to perform
tasks such as MMU configuration and context switching;
SVA extends the LLVM IR by introducing a set of low-level
instructions, called SVA-OS, which operating system kernels
can use to perform these low-level operations. As all code,
including operating system kernel and application code, is
compiled to SVA’s Virtual Instruction Set Architecture (V-
ISA) [5], SVA can enforce security policies (such as memory
safety [5], [6] and control-flow integrity [11]) on all code
by inserting run-time checks into the code while translating
it from the virtual instruction set to the native instruction
set. Additionally, SVA can employ static analysis to eliminate
unnecessary run-time checks.

Fig. 1. Secure Virtual Architecture

On an SVA-based system, all software is shipped to end
users as virtual instruction set code. There are three main
benefits in using SVA’s V-ISA to encode software that are un-
available to code expressed in most native instruction sets [5]:

• Program memory is separated into code, global variables,
stack allocations, and heap memory. This design allevi-
ates the need to reconstruct information on variables from
machine code e.g., by using Value Set Analysis [12]. Ad-
ditionally, by having an explicit code segment protected
by code segment integrity [6], [11], SVA alleviates the
need to analyze self-modifying code.

• Any function expressed in the V-ISA cannot have any lo-
cal branches computed at run-time. Explicit local control-
flow graphs alleviate the need to construct the local
control-flow graph for data-flow analysis.

• The V-ISA’s use of an infinite set of virtual registers
in Static Single Assignment (SSA) form enables effi-
cient yet powerful data flow analysis. Improvements to
analysis include simplifying def-use graphs and avoiding
anti/output data dependencies [10]. Some program anal-
ysis algorithms, such as constant propagation [13] and
flow-sensitive points-to analysis [14], can be performed
more efficiently on code in SSA form.

Because SVA translates all user-mode and kernel-mode code
from virtual instruction set code to native instruction set code,
SVA can enforce security policies on all code executed on
the processor [5]. We exploit this capability to defend against
hardware bugs. Using a mix of static analysis techniques
and instrumentation adding run-time checks to code, we can
guarantee that conditions known to trigger hardware bugs
cannot arise.

III. DESIGN

There are three methods that the SVA Virtual Machine (SVA
VM) can employ to thwart security-critical processor bugs:
it can use a code generator that never generates instruction
sequences that trigger a processor bug; it can verify that the
native code it has generated for a program does not trigger a
processor bug; or it can insert run-time checks into that native
code to check whether a processor bug is about to be triggered.
Figure 2 shows the compilation pipeline.

A. Safe Code Generation

The best solution for thwarting security-critical processor
bugs is to ensure that no native code running on the system can
trigger such a bug. For some processor bugs, this can be done
by modifying the SVA native code generator to ensure that it
never generates bug-triggering instruction sequences. Such a
solution is unlikely to incur overhead so long as a similarly
fast instruction sequence can generate the same result on the
processor without error.

For example, there exists a processor bug which is triggered
by some invocations of the FSINCOS instruction; under some
circumstances, execution of this instruction will corrupt the
program counter [8]. For processor bugs such as these, the
SVA code generator can be modified to emit separate FSIN
and FCOS instructions that do not trigger the bug instead of the
FSINCOS instruction which does. More generally, the SVA
virtual code to native code translator can be modified to avoid
generating instruction sequences that trigger processor bugs.

B. Verifying Native Code

In addition to modifying the code generator to proactively
avoid generating sequences of instructions which are known to
trigger processor bugs, SVA could also statically detect, after
native code generation, whether its code generator produced
code that can trigger a processor bug. This approach can



Fig. 2. Secure Code Generation Pipeline

address a much wider variety of processor bugs than those
that can be “easily” prevented through simple code generator
modifications - for instance, bugs that can be triggered by
a large or infinite number of different instruction sequences.
It can also verify that modifications to the code generator
which avoid generating bug-triggering instruction sequences
(as Section III-A describes) were performed correctly. The
SVA VM can perform this static analysis prior to running a
program; if it observes that the code generator has generated
a potentially dangerous sequence of instructions, it can take
some protective action (such as refusing to run the program
or alerting the system administrator).

We have developed a static analysis procedure which builds
a context-free grammar encoding the set of instruction se-
quences that a program can execute when it runs. Each static
instruction in the program is a terminal symbol in the grammar,
and each sentence in the grammar’s language represents a
sequence of dynamic instructions that can arise in some execu-
tion of the program. In other words, a sentence can be thought
of as a trace of some potential execution of the program,
listing the sequence of static instructions (terminal symbols)
in the order that they would be executed. The sentence is in
the grammar’s language if and only if the program’s control-
flow graph would permit that path through the program to be
followed in some execution. Because SVA can enforce control
flow integrity (CFI) at run time [5], [11], memory safety
errors cannot cause programs to deviate from the control-
flow graph used by this analysis; thus, we can be sure that
the grammar encompasses all instruction sequences that the
program could possibly execute. The grammar accounts for
function call/return context in determining whether a trace is
valid (e.g., a function cannot return to a different location than
where it was called); this invariant can be enforced at run time
by using a version of CFI with a shadow stack [2]. The only
(potential) source of imprecision in the control-flow graph is
due to over-approximation of the potential values of function
pointers; since this is also a limitation of CFI, the grammar
therefore models exactly the range of behavior that can be
exhibited by the program in the presence of memory safety
errors.

Using this grammar, we can statically determine whether it
is possible for a sequence of dynamic instructions to arise
during execution that could potentially trigger a particular
hardware bug. To do this, we first characterize all sequences
of dynamic instructions that can trigger the bug as a regular
language. From this, we can construct a finite state automaton
(FSA) that checks whether or not a particular sequence of
dynamic instructions could trigger the bug. We can then inter-
sect this FSA with a pushdown automaton (PDA) parser for

the control-flow grammar that we generated for the program
under analysis [15]. The intersection produces a new PDA,
the language of which is precisely the set of possible program
traces which include bug-triggering sequences. This language
will be empty if and only if no execution of the program can
potentially trigger the bug. Thus, if the language is empty, we
know the program is safe; if not, we conclude that the program
is unsafe.

Intersecting the FSA and PDA and checking whether the
resultant PDA represents an empty language are both decidable
operations that can be performed in linear time [15]. This
allows the SVA VM to cheaply and accurately determine at
compile time whether a program can potentially trigger a
hardware bug.

A potential concern with this method is that the class of
regular languages could limit our ability to precisely express
bug trigger conditions. It is conceivable that some hardware
bugs may be triggered by instruction sequences that cannot
be characterized as a regular language. Our preliminary inves-
tigations (Section IV-B) did not identify any real-world bugs
whose conditions could not be expressed as regular languages;
however, our sample size is small and this question bears
further investigation. Bugs with non-regular conditions can
still be addressed with this approach if the user is willing
to tolerate some false positives (harmless programs could be
categorized as buggy) by defining a FSA whose language
is a regular superset of the actual trigger conditions. We
present ideas for more satisfactorily addressing this limitation
in Section VII.

C. Run-time Checks

Some processor bugs are not triggered by unusual instruc-
tion sequences. Rather, they are triggered by using benign
instructions to place the processor into a particular state.
For example, some AMD processors suffer from a bug in
which the processor generates a debug trap when executing
the syscall instruction [16]. A strict set of conditions must
be met to trigger the bug; one of the conditions requires that
the syscall instruction be marked as a breakpoint [16].

SVA can insert run-time checks into code during native code
generation to prevent a program from triggering such bugs.
Native code instructions that could place the processor into a
vulnerable state will be instrumented with run-time checks that
will ensure that the processor is not placed into an unsafe state.
In the case of the aforementioned syscall bug, the virtual
instruction for setting breakpoints could be enhanced with a
run-time check verifying that the address for the breakpoint
does not contain a syscall instruction. If an attempt to set
a breakpoint fails, the virtual instruction can either generate



a trap or return an error code indicating that the breakpoint
could not be set.

As run-time checks can add overhead, they will only be
used as a last resort for processor bugs that cannot be thwarted
through other methods.

IV. EXPERIMENTAL RESULTS

A. Bug Survey Statistics

We analyzed the 27 security-critical processor bugs sur-
veyed by Hicks et. al. in their work on SPECS [17]. We studied
each bug and determined the feasibility of thwarting the bug
using one of our three techniques.

Figure 3 shows the results. Each section in the chart
shows the proportion of hardware bugs which we categorized
according to the mitigation mechanisms applicable to each
bug. We have published details on this survey in a separate
technical report [18].

We aimed to categorize each bug into one of three deter-
rence categories: (1) configuration of SVA-OS, (2) analysis
with grammar checks, or (3) instrumentation with run-time
checks. Any bugs that could not be completely mitigated, and
thus did not fall into any of these categories, are classified as
either (4) SVA Cannot Mitigate, (5) Insufficient Documenta-
tion, or (6) No Hardware Virtualization Support. Each category
is described below:

• SVA-OS: Bugs within this category are mitigated by some
aspect of system configuration being performed through
SVA-OS. SVA-OS abstracts and controls various system
configuration operations, such as MMU configuration,
interrupt handler configuration, and processor features
controlled by Machine Specific Registers (MSRs) [6].
The SVA-OS implementation can be enhanced to perform
run-time checks to ensure that configuration does not
trigger a processor bug.

• Grammar Checks: Bugs that can be mitigated using safe
code generation and static verification of native code, as
discussed in Sections III-A and III-B, are placed in this
category.

• Run-time Checks: Any bugs which are deterred through
the use of run-time checks that are inserted into the
code during native code generation, as discussed in
Section III-C, fall into this category. This does not
include run-time checks that are manually added to the
implementation of the SVA-OS instructions.

• Insufficient Documentation: Processor manufacturers do
not always provide precise details on security-critical
processor bugs. The lack of mitigation techniques for
such bugs is not due to limitations in our approach but
due to the lack of information available for such processor
bugs.

• SVA Cannot Mitigate: Some bugs cannot be mitigated by
SVA; we placed such bugs into this category.

• No Hardware Virtualization Support: SVA does not cur-
rently provide support for operating systems and software
running on it to take advantage of hardware virtualization

SVA-OS
47%

Run-time Checks
20%

Grammar Checks
13%

SVA Cannot Mitigate 7%

Insufficient Documentation
13%

Fig. 3. Processor Bug Analysis

extensions (VMX) [19]. Thus, it is immune to processor
bugs involving VMX, but only incidentally. VMX-related
bugs will need to be mitigated in future versions of SVA
that add support for this feature.

As noted above, we did not analyze bugs involving VMX
extensions. These comprise 46% of the 28 bugs studied by
Hicks et al. and are not shown in Figure 3. Even so, our study
shows that our techniques can thwart 43% of the 28 processor
bugs that we studied. Of the non-VMX related bugs (15 total),
47% can be mitigated using SVA-OS, 20% can be mitigated
using run-time checks, and 13% can be mitigated using static
analysis grammar checks.

Our analysis shows that our design cannot mitigate 27% of
the non-VMX-related bugs. However, 13% of those bugs are
due to insufficient documentation. It is possible that, with more
information, an SVA-based mitigation could be designed.

B. Bug Finite State Automata

Of the 28 bugs considered in our study, we identified
two as being suitable for detection with our automata-based
static analysis technique. We have created finite-state automata
characterizing the conditions triggering both of these bugs,
establishing that they can be represented as regular languages.
These examples are discussed in more detail below.

1) Example: A Single Bad Instruction: The bug published
in Erratum #573 for AMD’s Family 11h processors involves a
particular instruction, FSINCOS, which can sometimes corrupt
the program counter when executed [8]. Any instance of
this instruction can potentially trigger the bug. This can be
represented by a very simple regular language: the language
contains precisely all possible sentences (program traces)
which contain one or more FSINCOS instructions (Figure 4).
As noted in Section III-A, this is an example of a bug which
can be proactively avoided by modifying the SVA native
code generator so that it simply selects a different instruction
sequence that performs an equivalent computation. However, a
grammar check can provide a second line of defense to confirm
that such code generator modifications are indeed in effect.

2) Example: A Long Sequence Triggering a Bug: Erratum
#639 for AMD’s Family 14h processors describes a bug which
can result in the program counter being corrupted when a
CALL RSP instruction is executed after a long sequence of at



s0start ACCEPT
FSINCOS

other
all

Fig. 4. Finite State Automaton for Erratum #573

Note: “ppcr” means we have seen a push, pop, near-call, or near-retn.
“sp” means any instruction (except these) which uses the stack pointer.
“other” means any other instruction.

s0start s1 ...

s99ACCEPT

ppcr

other

ppcr

sp

other

ppcr
sp

otherppcrsp

Fig. 5. Finite State Automaton for Erratum #639

least 100 pushes, pops, near-calls and/or near-returns with no
other operations in between that use the stack pointer (register
RSP) [1]. Unlike the bug we considered in Section IV-B1,
these conditions cannot be narrowly addressed with a code
generator modification. It is, however, straightforward to pre-
cisely represent the conditions which trigger this bug as a
regular language: we can design a FSA (Figure 5) that accepts
a program trace (i.e., declares it to be vulnerable to the bug)
if and only if it sees 100 pushes, pops, near-calls and/or near-
returns not separated by some other instruction that uses the
stack pointer.

V. PERFORMANCE OVERHEAD

Previous work on KCoFI [11], a system built using SVA [5],
provides a lower bound on the expected overhead that
would be introduced by our proposed design for deterring
security-critical processor bugs. An implementation of our
design would build on the existing KCoFI infrastructure as
KCoFI provides the minimal protections needed by our design
(control-flow integrity and code segment integrity).

Criswell et al. [11] evaluated KCoFI’s performance with the
thttpd web server, an OpenSSH Secure Shell server, the
LMBench microbenchmarks which measure the performance
of kernel services [20], and Postmark, a benchmark which
simulates mail activity [21].

For the thttpd web server, Criswell et al. measured the
bandwidth provided by the server by transferring files ranging
in size from 1 KB to 2 MB using multiple simultaneous
connections; their results showed that the average change in

bandwidth was negligible compared to the native FreeBSD
kernel [11]. Similar tests on the OpenSSH server using a single
network client showed that bandwidth was reduced by 13%
on average with a maximum reduction of 27%. Using LM-
Bench [20] to measure the latency of basic kernel operations
(such as opening/closing files, creating processes, and signal
handler dispatch), Criswell et al. showed that KCoFI decreases
kernel-mode performance by a factor of 2 to 3.5. However,
this fairly high number was only indicative of kernel-mode
execution; the execution of the previously mentioned user-
space applications showed much less overhead.

Finally, Postmark was used to further measure file system
performance, which showed results similar to the more kernel
intensive execution under LMBench [11]. On average, exe-
cution took approximately two times longer when compared
to the native FreeBSD kernel, consistent with the LMBench
results.

VI. RELATED WORK

Several previous approaches have been designed to address
processor bugs. However, all such approaches require changes
to the processor. Our work, in contrast, requires no processor
changes and can be deployed on existing processors.

Man-Lap Li et al. characterized hard errors [22] and used
it as ground work for SWAT [23]. SWAT [22], [23] uses low-
cost hardware and software monitors to detect hard errors via
a thin firmware layer which coordinates detection, diagnosis,
and recovery components of their system. SWAT employs a
checkpoint and replay system [23] to retry the computation
to determine if the error was a soft (intermittent) error or a
hard (permanent) error; on a SWAT system, execution must
be moved to a fault-free core upon detection of a hard error.
Our approach handles design flaws which may affect all cores
on a system and is capable of preventing the exploitation of
some bugs.

SPECS [17] adds additional hardware that enforces asser-
tions at run-time. When assertions fail, an exception handler
for recovery from the caught faulty execution is run. This ap-
proach is low-overhead but requires assertions to be deployed
with the processor; changes cannot be made after deployment.
Our approach alleviates the need for new hardware and can
be updated as new hardware bugs are discovered.

Systems such as Phoenix [24] and the work of Constan-
tinides et al. [25] monitor the control signals on a processor
for signs of a processor fault; the patterns for which to search
can be updated by software. These systems can be updated
like software. However, they still require the processor supplier
to add specialized hardware. Phoenix’s specialized hardware
is composed of four units responsible for (1) programming
Phoenix, (2) selecting particular logic signals to be monitored,
(3) translating the set of selected signals into logic which flags
detected defects, and (4) recovery. In contrast, our approach
works on existing commodity processors.

The Access-Control Extension (ACE) [26] extends the pro-
cessor instruction set with new instructions that can query



internal processor state; privileged firmware periodically ex-
ecutes and uses these instructions to test the processor for
defects. Because ACE scans the processor periodically, it may
fail to detect a vulnerability until after damage has been done.
Our approach, on the other hand, detects errors before they
are exploited.

VII. FUTURE WORK

In future work, we will implement defenses for the hardware
bugs studied in the SPECS project [17] in SVA and evaluate
the performance of both the static analysis and run-time
checks. We will also evaluate our work on a larger corpus
of processor bugs.

The performance overhead of our system needs to be
thoroughly evaluated. Run-time checks are likely to increase
execution time. Additionally, replacing instructions during
code generation with others that are safe may reduce perfor-
mance as the new instruction sequences may not yield identical
performance.

Our solution makes the assumption that most of the func-
tionality of the processor is correct, allowing us to use static
analysis and run-time checks. Future research can examine
what subset of processor functionality is needed for our secu-
rity checks and whether strong verification of that subset could
guarantee that our checks are correct. If possible, such work
could yield very secure processors without greatly increasing
verification efforts.

There exist a significant number of processor bugs which
are triggered “under a complex set of internal timing condi-
tions” [1]. We surmise that these bugs occur due to errors in
processor features such as pipelining, out-of-order execution,
register renaming, and speculation. Even if instruction se-
quences for triggering the bug are known, preventing code that
can trigger the bug could prevent benign code from executing.
One possible remedy would be to enhance the SVA code
generator to insert code to flush the processor pipeline when
a program could trigger one of these processor bugs. Such an
approach would allow benign code that would otherwise be
disallowed from executing to run (albeit with higher execution
time).

We will expand our survey of bugs to identify more that are
triggered by unusual instruction sequences and thus suitably
mitigated with our static verification approach in Section III-B.
This will allow us to better understand whether the constraint
of needing to express bug conditions as a regular language is
a limitation in practice. If so, we will explore ways of dealing
with false positives (harmless programs categorized as buggy
due to use of a FSA that over-approximates a bug’s conditions)
that allow the code to still be run without risking a security
breach. For instance, if we can mitigate potentially buggy
code by selectively disabling CPU optimizations responsible
for the bug in question (as discussed above) or through
targeted recompilation of potentially buggy code to avoid
the trigger conditions, false positives would only potentially
reduce performance, not functionality. Alternatively, we could

instrument code statically identified as buggy with more pre-
cise run-time checks, again trading performance to maintain
full functionality of genuinely harmless programs.

VIII. CONCLUSIONS

This paper presents a software solution for processor bugs
utilizing the Secure Virtual Architecture (SVA). Since all
software on an SVA system is shipped as virtual instruction
set code which is translated to native code by the SVA
Virtual Machine, SVA can control whether native code triggers
a processor bug. We proposed three methods of thwarting
security-critical processor bugs (safe code generation, native
code verification, and run-time checks) and demonstrated the
applicability of our native code verification technique on two
real processor bugs.

ACKNOWLEDGEMENTS

We thank Professor Joel Seiferas of the University of
Rochester for inspiring the idea behind the grammar-based
verification approach (Section III-B). We also thank the anony-
mous reviewers for their helpful feedback. This work was
supported by National Science Foundation Award Number
1463870.

REFERENCES

[1] A. M. D. Inc., “Revision guide for AMD
family 14h models 00h-0fh processors,” Febru-
ary 2013, http://support.amd.com/TechDocs/47534 14h Mod 00h-
0Fh Rev Guide.pdf. [Online]. Available: http://support.amd.com/
TechDocs/47534 14h Mod 00h-0Fh Rev Guide.pdf

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity principles, implementations, and applications,” ACM
Transactions on Information Systems Security, vol. 13, pp. 4:1–
4:40, November 2009. [Online]. Available: http://doi.acm.org/10.1145/
1609956.1609960

[3] A. M. D. Inc., “Revision guide for AMD
family 15h models 00h-0fh processors,” Septem-
ber 2014, http://support.amd.com/TechDocs/48063 15h Mod 00h-
0Fh Rev Guide.pdf. [Online]. Available: http://support.amd.com/
TechDocs/48063 15h Mod 00h-0Fh Rev Guide.pdf

[4] Intel Corporation, “7th generation intel R© processor fam-
ily specification update,” February 2017. [Online]. Avail-
able: https://www.intel.com/content/dam/www/public/us/en/documents/
specification-updates/7th-gen-core-family-spec-update.pdf

[5] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Secure Virtual
Architecture: A safe execution environment for commodity operating
systems,” in Proceedings of the 21st ACM SIGOPS Symposium on
Operating Systems Principles, ser. SOSP’07. Stevenson, WA: ACM,
2007, pp. 351–366. [Online]. Available: http://doi.acm.org/10.1145/
1294261.1294295

[6] J. Criswell, N. Geoffray, and V. Adve, “Memory safety for low-level
software/hardware interactions,” in Proceedings of the 18th USENIX
Security Symposium, ser. Security’09, 2009, pp. 83–100. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855768.1855774

[7] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient software-based fault isolation,” in Proceedings of the 14th
ACM Symposium on Operating Systems Principles, ser. SOSP’93.
Asheville, NC: ACM, 1993, pp. 203–216. [Online]. Available:
http://doi.acm.org/10.1145/168619.168635

[8] A. M. D. Inc., “Revision guide for AMD family 11h processors,” Decem-
ber 2011, http://support.amd.com/TechDocs/41788 11h Rev Gd.pdf.
[Online]. Available: http://support.amd.com/TechDocs/41788 11h Rev
Gd.pdf

[9] J. Criswell, B. Monroe, and V. Adve, “A virtual instruction set interface
for operating system kernels,” Boston, MA, USA, June 2006, pp. 26–33.

http://support.amd.com/TechDocs/47534_14h_Mod_00h-0Fh_Rev_Guide.pdf
http://support.amd.com/TechDocs/47534_14h_Mod_00h-0Fh_Rev_Guide.pdf
http://doi.acm.org/10.1145/1609956.1609960
http://doi.acm.org/10.1145/1609956.1609960
http://support.amd.com/TechDocs/48063_15h_Mod_00h-0Fh_Rev_Guide.pdf
http://support.amd.com/TechDocs/48063_15h_Mod_00h-0Fh_Rev_Guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/7th-gen-core-family-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/7th-gen-core-family-spec-update.pdf
http://doi.acm.org/10.1145/1294261.1294295
http://doi.acm.org/10.1145/1294261.1294295
http://dl.acm.org/citation.cfm?id=1855768.1855774
http://doi.acm.org/10.1145/168619.168635
http://support.amd.com/TechDocs/41788_11h_Rev_Gd.pdf
http://support.amd.com/TechDocs/41788_11h_Rev_Gd.pdf


[10] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of the
International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, ser. CGO’04. Palo Alto,
CA: IEEE Computer Society, 2004, pp. 75–86. [Online]. Available:
http://dl.acm.org/citation.cfm?id=977395.977673

[11] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Kernels,” in
Proceedings of the 35th IEEE Symposium on Security and Privacy
(S&P), San Jose, CA, May 2014, pp. 292–307. [Online]. Available:
https://doi.org/10.1109/SP.2014.26

[12] T. Reps and G. Balakrishnan, “Improved memory-access analysis for
x86 executables,” in Proceedings of the Joint European Conferences
on Theory and Practice of Software 17th International Conference
on Compiler Construction, ser. CC’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 16–35. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1788374.1788377

[13] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Transactions on Programming Languages and
Systems, pp. 13(4):451–490, October 1991.

[14] B. Hardekopf and C. Lin, “Flow-sensitive pointer analysis for millions
of lines of code,” in Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, ser.
CGO ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 289–298. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2190025.2190075

[15] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, 2nd ed. Addison-Wesley, 2001.

[16] A. M. D. Inc., “Revision guide for AMD family 10h processors,” March
2012, http://support.amd.com/TechDocs/41322 10h Rev Gd.pdf. [On-
line]. Available: http://support.amd.com/TechDocs/41322 10h Rev Gd.
pdf

[17] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “SPECS:
A lightweight runtime mechanism for protecting software from
security-critical processor bugs,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’15. New York,
NY, USA: ACM, 2015, pp. 517–529. [Online]. Available: http:
//doi.acm.org/10.1145/2694344.2694366

[18] K. Dharsee, E. Johnson, and J. Criswell, “Hardware vulnerability and
mitigation survey,” Tech. Rep. TR 1000, July 2017. [Online]. Available:
http://hdl.handle.net/1802/32871

[19] A. M. D. Inc., “Secure virtual machine architecture reference manual,”
AMD Publication, no. 33047, 2005.

[20] L. McVoy and C. Staelin, “lmbench: Portable Tools for Performance
Analysis,” in Proceedings of the USENIX Annual Technical Conference
(ATC), San Diego, CA, 1996, pp. 23–23. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1268299.1268322

[21] Postmark, “Email delivery for web apps,” July 2013. [Online].
Available: https://postmarkapp.com/

[22] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou, “Understanding the propagation of hard errors to software and
implications for resilient system design,” in Proceedings of the 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XIII. New York,
NY, USA: ACM, 2008, pp. 265–276.

[23] M.-L. Li, P. Ramachandran, S. K. Sahoo, and S. A. V. S. A. Y. Zhou,
“Swat: An error resilient system,” Proceedings of SELSE, 2008.

[24] J. T. Smruti R. Sarangi, Abhishek Tiwari, “Phoenix: Detecting and
recovering from permanent processor design bugs with programmable
hardware,” in Proceedings of 39th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-39, Dec 2006, pp. 26–37.

[25] K. Constantinides, O. Mutlu, and T. Austin, “Online design bug detec-
tion: Rtl analysis, flexible mechanisms, and evaluation,” in Proceedings
of the 41st Annual IEEE/ACM International Symposium on Microar-
chitecture, ser. MICRO 41. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 282–293.

[26] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco, “Software-
based online detection of hardware defects mechanisms, architectural
support, and evaluation,” in Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 40. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 97–108.

http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1109/SP.2014.26
http://dl.acm.org/citation.cfm?id=1788374.1788377
http://dl.acm.org/citation.cfm?id=1788374.1788377
http://dl.acm.org/citation.cfm?id=2190025.2190075
http://dl.acm.org/citation.cfm?id=2190025.2190075
http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf
http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf
http://doi.acm.org/10.1145/2694344.2694366
http://doi.acm.org/10.1145/2694344.2694366
http://hdl.handle.net/1802/32871
http://dl.acm.org/citation.cfm?id=1268299.1268322
https://postmarkapp.com/

