
Secure Guest Virtual Machine Support in Apparition
Ethan Johnson

Department of Computer Science

University of Rochester

Rochester, New York, USA

ejohns48@cs.rochester.edu

Komail Dharsee

Department of Computer Science

University of Rochester

Rochester, New York, USA

kdharsee@cs.rochester.edu

John Criswell

Department of Computer Science

University of Rochester

Rochester, New York, USA

criswell@cs.rochester.edu

Abstract
Recent research utilizing Secure Virtual Architecture (SVA)

has demonstrated that compiler-based virtual machines can

protect applications from side-channel attacks launched by

compromised operating system kernels. However, SVA pro-

vides no instructions for using hardware virtualization fea-

tures such as Intel’s Virtual Machine Extensions (VMX) and

AMD’s Secure Virtual Machine (SVM). Consequently, op-

erating systems running on top of SVA cannot run guest

operating systems using features such as Linux’s Kernel Vir-

tual Machine (KVM) and FreeBSD’s bhyve.

This paper presents a set of new SVA instructions that

allow an operating system kernel to configure and use the

Intel VMX hardware features. Additionally, we use these new

instructions to create Shade. Shade extends Apparition (an

SVA-based system) to ensure that a compromised host oper-

ating system cannot use the new VMX virtual instructions

to attack host applications (either directly or via page-fault

and last-level-cache side-channel attacks).

CCSConcepts • Security andprivacy→Operating sys-
tems security; Trusted computing; Virtualization and
security;

Keywords hypervisors, hypervisor security, untrusted hy-

pervisor, side channels, secure computer architectures, trusted

execution environments, compiler-based virtual machines

ACM Reference Format:
Ethan Johnson, Komail Dharsee, and John Criswell. 2019. Secure

Guest Virtual Machine Support in Apparition. In Proceedings of
the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE ’19), April 14, 2019, Providence, RI,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3313808.3313809

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

VEE ’19, April 14, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6020-3/19/04. . . $15.00

https://doi.org/10.1145/3313808.3313809

1 Introduction
Modern operating systems such as Linux and FreeBSD are

capable of running hardware-based virtual machines (Linux

via KVM [22] and FreeBSD via bhyve [2]). The kernel code

of these operating system (OS) kernels has been enhanced

to use the virtualization features of modern x86 processors—

Intel’s Virtual Machine Extensions (VMX, also known as VT-
x) [21] and AMD’s Secure Virtual Machine (SVM, also known

as AMD-V) [1]—to launch new instances of operating sys-

tems. This feature allows users to run applications designed

for one operating system on top of another (e.g., a user can

run a Windows virtual machine on a Linux laptop). It also

allows users to run applications in an environment isolated

from the host OS kernel, protecting the host kernel and ap-

plications running on it from programs running in the guest

virtual machine (VM).

In parallel, recent research work has demonstrated how

virtual instruction set computing (VISC) can be employed

to enforce fine-grained security policies on application and

OS kernel code. In VISC systems [4, 13, 14], software is com-

piled to a virtual instruction set; a trusted translator within

a compiler-based virtual machine instruments the code with

run-time checks to enforce a security policy before generat-

ing native code to execute on the processor. Secure Virtual

Architecture (SVA) [13] is a VISC infrastructure that has been

used to enforce memory safety [12, 13] and control-flow in-

tegrity (CFI) [10]. SVA has also been used to build systems

such as Virtual Ghost [11] and Apparition [19] which protect

applications from compromised OS kernels; current defenses

mitigate both direct attacks and last-level-cache [20] and

page-fault [39] side-channel attacks.

The SVA virtual instruction set currently lacks support

for VMX hardware extensions which allow OS kernels to

run whole-system virtual machines efficiently. This work

extends the SVA virtual instruction set with new VMX-based

instructions that allow an OS kernel running on an SVA-

based system to execute virtual machines. Furthermore, we

enhance the implementation of these instructions with run-

time checks to ensure that the host OS kernel cannot use

them to access the private memory of host applications.

Specifically, we enhance Apparition [19] so that the host OS

kernel cannot use hardware-based virtual machines to by-

pass Apparition’s memory protections, side-channel protec-

tions, and control-flow protections. This new system, dubbed

17

https://doi.org/10.1145/3313808.3313809
https://doi.org/10.1145/3313808.3313809
https://doi.org/10.1145/3313808.3313809

VEE ’19, April 14, 2019, Providence, RI, USA Ethan Johnson, Komail Dharsee, and John Criswell

Shade, protects host applications both from the host OS ker-

nel and from guest software running atop the host OS.

The challenge in providing secure access to VMX hard-

ware is that a compromised OS kernel could use it to bypass

Apparition’s [19] run-time checks. More specifically, Shade

must solve the following challenges:

• Shade must enforce control flow integrity across VM

entry and exit.

• Shade must prevent a compromised hypervisor from

providing a guest VM with memory that the hyper-

visor may not read or write. Otherwise, a hypervisor

could simply load its code into a guest VM to bypass

Apparition’s run-time memory protection checks.

• Shade must prevent a compromised hypervisor from

giving a guest VM access to hardware features (e.g.

model-specific registers) that could allow the guest to

deactivate Apparition’s security enforcement.

• Shade must ensure that Apparition’s side-channel at-

tack mitigations (e.g. cache partitioning) are applied

to guest VMs.

To summarize, our contributions are as follows:

• We describe the design of new virtual instructions

that allow OS kernels ported to SVA to use processor

virtualization features.

• We describe the design and prototype implementation

of Shade, a system that implements the new virtual

instructions in a way that protects host applications

from both the host OS and guest VM software.

• We evaluate the performance overhead of Shade’s run-

time checks.

The rest of the paper is organized as follows. Section 2

describes Apparition and the security guarantees that it pro-

vides, and Section 3 provides background on the Intel VMX

processor features. Section 4 presents our threat model. Sec-

tion 5 describes the design of our virtual instruction set ex-

tensions and how it protects host applications from compro-

mised hypervisors and virtual machines under their control.

Section 6 describes our prototype implementation, and Sec-

tion 7 presents our experimental results. Section 8 presents

related work, Section 9 describes directions for future work,

and Section 10 presents concluding remarks.

2 Apparition
Apparition [19], shown in Figure 1, is a compiler-based vir-

tual machine, based on SVA [13], that is placed between

privileged software and hardware. Apparition protects ap-

plication data from theft and corruption by a compromised

OS kernel. Apparition divides the virtual address space of

each process into four regions as Figure 2 shows:

• User Memory: User memory is the region of the vir-

tual address space shared by an application and the

OS kernel. Both the application and the OS kernel can

Processor

Apparition Virtual Machine

Host OS
(SVA V-ISA Code)

Host Applications
(SVA V-ISA or Native Code)

Native ISA

Virtual ISA

Figure 1. Apparition Architecture

read and write user memory. Standard operating sys-

tems such as Linux [6] and FreeBSD [26] provide user

memory.

• Kernel Memory: Kernel memory is the region of the

virtual address space belonging to the OS kernel; only

the OS kernel and the Apparition VM are allowed to

read and write kernel memory.

• Ghost Memory: Ghost memory is memory that ap-

plication code is allowed to read and write but the OS

kernel is prevented from reading and writing. Appli-

cations can store data in ghost memory to protect its

confidentiality and integrity.

• SVA VMMemory: SVA VM memory is memory that

only the Apparition VM can read and write. This mem-

ory is used to store Apparition’s internal data struc-

tures.

Apparition [19] exposes a virtual instruction set based on

LLVM IR [23] to which OS kernel software (and optionally,

application software) is compiled; the processor implements

a native instruction set. The Apparition VM translates vir-

tual instruction set code to native code for execution, adding

instructions to enforce Software Fault Isolation (SFI) [36] be-

fore every load and store in the OS kernel to ensure that the

OS kernel cannot read or write ghost memory or Apparition

VM memory. The Apparition VM also inserts instructions

enforcing Control Flow Integrity (CFI) [3] into code during

translation to prevent memory safety errors from bypass-

ing the SFI mechanisms. Finally, the implementation of the

SVA-OS instructions (a set of virtual instructions for oper-

ating systems to perform state manipulation and privileged

hardware configuration) adds additional run-time checks

to ensure that operations such as context switching, thread

creation, and MMU configuration do not expose the contents

SVA
VM Memory

User
Memory

Ghost
Memory

Kernel
Memory

0 264-1

Protected Memory

Figure 2. Virtual Address Space Layout

18

Secure Guest Virtual Machine Support in Apparition VEE ’19, April 14, 2019, Providence, RI, USA

of ghost memory or SVA VM memory to theft or corrup-

tion [11].

As part of its confidentiality protections, Apparition [19]

prevents a compromised OS kernel from using page-fault

side-channel attacks [39] and last-level-cache (LLC) side-

channel attacks [20] to steal application data residing in

ghost memory. The SVA-OS MMU instructions in Apparition

ensure that the OS kernel cannot read or write page table

entries that map ghost memory. The Apparition VM also

leverages Intel’s Cache Allocation Technology (CAT) [21]

to partition the last-level cache to prevent accesses to ghost

memory from leaking information to the OS kernel via the

last-level cache.

3 Intel Virtualization Extensions
To achieve optimal performance, a virtual machine should

execute code directly on the system’s real hardware as much

as possible. However, because full-system virtual machines

need to run privileged software (e.g., OS kernels) and yet

need to be restrained from violating the confidentiality, in-

tegrity, and availability of the host system and other VMs,

this is not always feasible. Virtualization systems must en-

sure that VMs trap to privileged host software, known as a

hypervisor or virtual machine monitor (VMM), to safely em-

ulate privileged operations without directly exposing them

to potentially untrusted guest software.

To improve the performance of full-system virtual ma-

chine monitors and simplify their development, Intel added

VirtualMachine Extensions (VMX) to their x86 processors [21].

VMX provides hardware support for implementing “trap-

and-emulate” hypervisors sans binary recompilation or para-

virtualization. AMD implements structurally similar, but in-

compatible extensions in their x86 processors known as Se-
cure Virtual Machine (SVM) or AMD-V [1]. For simplicity, we

focus on Intel hardware in this work; our approach should

apply equally well to AMD systems. Privileged host soft-

ware can instruct the CPU to enter a “guest mode” (known

as VMX non-root operation in Intel’s parlance), in which code

continues to execute directly on the hardware, but the pro-

cessor will stop and return to hypervisor code in “host mode”

(VMX root operation) if selected privileged instructions are

issued. Entry to guest mode is called VM entry and traps

to the host VM exits. The hypervisor can flexibly configure

which conditions trigger a VM exit to suit its needs.

Because VM exits are expensive, subsequent improve-

ments to VMX have focused on providing mechanisms to

safely virtualize an increasingly large subset of x86 func-

tionality without trapping to the hypervisor, thus increasing

performance. These improvements include extended page
tables (EPT), the addition of an IOMMU to support efficient

pass-through of physical devices to guests (Intel VT-d), and
interrupt controller virtualization [21].

3.1 Basic VMX Operation
The VMX software interface is centered around the Virtual
Machine Control Structure (VMCS), a roughly page-sized data

structure which is managed by the hardware and accessible

by software through special instructions [21]. Each VM that

is active on the hardware has its own VMCS. The VMCS con-

tains nearly all of the data relevant to running a VM on the

physical hardware, including controls that define when VM

exits occur, the current state of guest control registers, and

fields that reflect which interrupts the guest is blocking, the

power-management state of its virtual CPU, etc. The VMCS

also stores key aspects of the suspended host state while

a CPU is executing in guest mode, such as its instruction

pointer and stack pointer. In general, the VMCS stores any

guest and host state that must be saved/loaded atomically on

VM entry and exit to ensure defined system operation. State

that does not need to be saved/loaded atomically, such as

the general-purpose registers, is not stored within the VMCS

but left to the hypervisor to save/restore as it desires.

VMX requires that a VMCS be loaded onto a logical pro-

cessor before it can be used [21]. This allows the hardware

to optimize its use of the VMCS by caching some of its fields

in internal, non-architecturally-visible registers across suc-

cessive runs of the same VM. When the hypervisor wants to

run a different VM, it must unload the active VM and load

the new VM. Because portions of a loaded VMCS may be

cached within the processor, Intel mandates the use of the

special instructions VMREAD and VMWRITE to access VMCS

fields instead of directly reading andwriting them inmemory.

These instructions will only operate on a currently loaded

VM, of which there can only be one at a time on a given

logical processor. The actual in-memory format of the VMCS

is implementation-dependent, and Intel warns that directly

accessing it may cause undefined behavior.

VM entry is triggered by one of two privileged instruc-

tions, VMLAUNCH and VMRESUME (which are identical except

that the optimized VMRESUME is used when the active VM has

remained loaded on the processor since a previous run; the

instructions are mutually exclusive) [21]. These instructions

perform a bevy of complex functions in a single atomic step

to transition the processor into guest mode before resuming

execution from the guest’s program counter. Prior to VM en-

try, the hypervisor writes appropriate values to VMCS fields

that will be loaded into control registers, segment registers,

model-specific registers (MSRs), and other processor state

on VM entry, thus defining the operating environment for

the guest system. It likewise writes to a corresponding set

of fields in the same VMCS that will be loaded atomically on

VM exit, thus defining the state to which the host will return

when guest execution is suspended due to attempting to per-

form some privileged operation. When VMLAUNCH/VMRESUME
is executed, the processor checks the guest and host state

fields, as well as the control fields defining when VM exits

19

VEE ’19, April 14, 2019, Providence, RI, USA Ethan Johnson, Komail Dharsee, and John Criswell

should occur, for consistency. If and only if all of these checks

succeed, the processor enters guest mode and resumes exe-

cution from the guest’s program counter. Otherwise, control

is returned to the hypervisor with an error.

A VM exit occurs when guest code attempts to perform

an operation that is defined as privileged by the VMCS con-

trols (as configured by the hypervisor) [21]. The reverse of

VM entry is performed, again as an atomic operation from a

software perspective: guest state is saved to the VMCS, and

host state is loaded. The hypervisor then resumes execution

in the state it specified prior to VM entry. It can then read

various VMCS fields that report the reason for the exit and

any information that may be needed to handle it appropri-

ately. How a VM exit is handled is up to the hypervisor; a

common reason for an exit is an attempt by the guest to per-

form I/O, which is traditionally emulated by the hypervisor

through virtual devices (disks, network interfaces, graphics

cards, etc.) managed in software [30]. Once the hypervisor

has modified the guest’s state to reflect any emulated privi-

leged operations, it may perform VM entry again to resume

the guest.

3.2 Extended Paging
Extended paging [21] (called Extended Page Tables (EPT) by
Intel) provides additional support beyond the basic VMX

feature set for efficient virtualization of physical memory

for VMs. Although guest memory can be virtualized without

extended paging, strategies for doing so are cumbersome,

may be inefficient, and can require extensive duplication

of guest paging hierarchies [21]. EPT provides a straight-

forward mechanism for virtualizing what the guest sees as

“physical memory” by mirroring the design of standard x86-

64 paging.

A 4-level hierarchy of extended page tables, nearly iden-

tical in layout to the regular page tables used to virtualize

the memory spaces of user processes, maps guest-physical
addresses to host-physical addresses [21]. When a guest at-

tempts to access what it sees as a physical address, the MMU

translates it to a real physical address on the host and ac-

cesses the appropriate address. As long as the hypervisor

has mapped a real physical page into the respective entry in

the extended page table hierarchy, the processor will directly

perform the memory access on behalf of the guest without

leaving guest mode or otherwise involving the hypervisor.

If the requested guest-physical address is unmapped in the

VM’s EPT hierarchy, a VM exit will occur, called an EPT
fault, trapping to the hypervisor, which can map in a phys-

ical page and re-enter the VM so the guest can re-try the

access. Alternatively, the hypervisor might manipulate the

guest’s execution state to emulate the attempted memory

access without mapping in a real memory page, e.g. to pro-

vide the guest with memory-mapped I/O to virtual devices.

In general, the mechanism of EPT faults is exactly parallel

to the way operating systems handle page faults by user

applications. The pointer to the root of the extended paging

hierarchy, comparable to CR3 in normal paging, is stored in

the VMCS and set by the hypervisor [21].

Note that the VM guest, as a fully virtualized x86 system,

has its own regular page tables which operate “on top of”

extended paging [21]. Extended paging is invisible to the

guest, which only sees the results of ordinary memory ac-

cesses within what it perceives to be physical memory, just

as a user application only sees virtual memory in conven-

tional OS paging. The guest OS may manage its memory

however it chooses, just as if it were running on real hard-

ware. It may elect to load CR3 and set up its own page tables

to virtualize its guest-physical address space to its own user

applications, in which case the processor translates guest

memory accesses through as many as eight levels of page
tables in total (four EPT levels + four conventional page table

levels for a 64-bit guest). Alternatively, the guest may access

guest-physical memory directly by running in an unpaged

mode, in which case its memory accesses are only translated

through the four-level EPT hierarchy.

4 Threat Model
Our threat model, based on the threat model of Appari-

tion [19], assumes that privileged system software (such

as the OS kernel and hypervisor) is vulnerable and can be

controlled by an attacker. (We assume that the hypervisor

is integrated into the host OS kernel in this work, though

our solutions can also be applied to standalone hypervisors

that operate in lieu of a host OS.) This attacker seeks to

read or write memory belonging to user-space applications

whose data is protected by the trusted execution environment
(TEE) provided by the Apparition compiler-based virtual ma-

chine [19]. Confidentiality attacks may attempt to directly

read memory or may opt to use page-fault side channel at-

tacks [39] or last-level cache side-channel attacks [20]; other

side channels not mitigated by Apparition are outside the

scope of our threat model. The attacker may also seek to

steal or corrupt data indirectly by attempting to disclose or

corrupt data within the Apparition virtual machine, which

enforces the TEE protections by mediating the system soft-

ware’s interactions with privileged hardware state.

We assume that the Apparition VM, and Shade’s exten-

sions to it, are implemented correctly. The Apparition VM

has a Trusted Computing Base (TCB) of 6,841 source lines of

code (SLOC) [19]; Shade’s TCB (a superset of Apparition’s) is

10,111 SLOC (see Table 3 in Section 6). With these sizes, we

believe the Apparition/Shade TCB is amenable to strong test-

ing and verification efforts. We assume also that protected

user-space applications running within the Apparition TEE,

and libraries they use, are part of the TCB for that applica-

tion’s security policy (though not for other independently

protected applications). Attacks leveraging vulnerabilities

within applications and their libraries are out of scope for our

20

Secure Guest Virtual Machine Support in Apparition VEE ’19, April 14, 2019, Providence, RI, USA

Processor
Shade Virtual Machine

Host OS
(SVA V-ISA Code)

Host Applications
(Native Code)

(SVA V-ISA Code)

Native ISA

Virtual ISA

Hypervisor Driver

Guest
Applications

(Native Code)

Guest OS
(Native Code)

Guest
Applications
(Native Code)

Guest OS
(Native Code)

Guest VMs

Figure 3. Shade Architecture

work; applications can defend themselves using hardening

tools [17, 28, 29] or type-safe languages. Since the applica-

tion is designed to take advantage of a TEE, we assume that it

and its libraries distrust return values from the OS to protect

against Iago attacks [7].

We explicitly exclude the OS kernel and hypervisor from

the TCB. Apparition [19] provides applications the ability to

maintain a secure operating environment notwithstanding

kernel compromise.

Guest virtual machines are considered untrusted. Con-

tainment of vulnerable software is a primary use case for

virtualization systems. Furthermore, because guest VMs are

under control of the hypervisor (which is untrusted), even a

benign VM could be co-opted by a compromised hypervisor

to launch attacks against ghost memory and the Shade VM.

Attacks involving physical access to the machine are out

of scope for our work (although SVA does provide protection

against DMA attacks by requiring the use of an IOMMU [12]).

5 Design
Figure 3 shows Shade’s architecture: it is a compiler-based

virtual machine based on SVA that protects host applica-

tions from the host OS kernel. However, as Figure 3 depicts,

Shade also permits the host OS kernel to create and execute

hardware-based virtual machines via extensions to the vir-

tual instruction set that expose the Intel VMX [21] processor

features. These hardware-based virtual machines can exe-

cute native-code OS kernels and applications. Shade protects

host applications from these hardware-based VMs and the

hypervisor driver managing them just as Apparition [19]

protects host applications from the OS kernel. Shade protects

the confidentiality and integrity of data in ghost memory

and of interrupted application state saved during interrupts,

traps, system calls, and context switches. Shade prevents the

OS kernel and guest VMs from using direct memory read

attacks, page-fault side-channel attacks [39], and LLC side-

channel attacks [20] to steal data stored in ghost memory. In

this way, Shade prevents the host OS kernel from using the

new virtual instructions supporting hardware VMs to bypass

the security guarantees originally provided by Apparition.

In this section, we describe in detail the threats to Ap-

parition’s security policies posed by VMX features and the

countermeasures Shade employs to mitigate them.

5.1 Control Flow Integrity
Like Apparition [19], Shade uses SFI to prevent the OS ker-

nel from reading and writing ghost memory and SVA VM

memory. Shade, like Apparition, also uses CFI enforcement

to ensure that compromised kernel-mode software cannot

bypass the SFI instrumentation. Thus, Shade must handle

VM entry and exit in a way that enforces CFI.

As Section 3 describes, the hypervisor (in our case, the

hypervisor driver within the OS kernel) configures within

the VMCS the code address to which the processor should

transfer control upon a VM exit. A compromised host could

configure this code pointer within the VMCS to bypass CFI

by setting this VMCS field to an arbitrary value. In addition

to this code pointer, the VMCS contains various other fields

storing sensitive saved host state fields—such as its stack

pointer and segment registers—which could similarly be

exploited to corrupt control flow integrity.

We address this threat by storing the VMCSwithin the SVA

VM’s memory and by controlling access to a guest VM via

the interface of our new SVA-OS instructions. Table 1 sum-

marizes the virtual instructions (intrinsics) that encapsulate

themanagement of guest VMs. The sva.allocvm() intrinsic
creates a new guest VM by allocating a VMCSwithin the SVA

VM memory and initializing it with the values pointed to by

the initial_ctrls and initial_state structures, which
are vetted to ensure that they do not create a guest VM with

permissions that could bypass Shade’s security enforcement.

The intrinsic also initializes the pointer to the guest VM’s

extended page tables in the VMCS via the initial_eptable
argument; this pointer must point to a frame that has already

been declared as a top-level EPT page. Since the VMCS is

allocated within the SVA VM’s memory, the OS kernel can-

not read or write it due to Shade’s SFI instrumentation. It

therefore cannot modify the aforementioned sensitive host

state fields within the VMCS during or after creation of the

guest VM. The sva.allocvm() intrinsic returns an identifier
denoting the new guest VM upon success.

With this design, Shade can prevent violations of control

flow integrity. Because privileged system software is forced

to use SVA-OS virtual instructions in lieu of assembly code,

the VM entry/exit process is under control of the Shade VM.

Shade disallows the system software from writing to the

VMCS fields controlling host state on VM exit, and instead

writes its own safe values there to ensure that VM exits

transfer control to the Shade VM.

Before a guest VM can start execution, it must be loaded

onto a processor. The sva.loadvm() and sva.unloadvm()
intrinsics load and unload the specified guest VM onto and

21

VEE ’19, April 14, 2019, Providence, RI, USA Ethan Johnson, Komail Dharsee, and John Criswell

Table 1. Shade SVA-OS VM Management Intrinsics

Name Description
int sva.allocvm

(sva_vmx_vm_ctrls *initial_ctrls,

sva_vmx_guest_state *initial_state,

pml4e_t *initial_eptable)

Allocate a descriptor and supporting data structures for a virtual machine and

initialize them with the provided execution controls and guest state. Returns an

integer ID that identifies the VM.

void sva.freevm(int vmid) Deallocate a virtual machine and associated structures.

int sva.loadvm(int vmid) Make a virtual machine active on the processor. Returns an error code.

int sva.unloadvm(void) Unload the current virtual machine from the processor. Returns an error code.

int sva.runvm(void) Enter guest-mode execution of the currently loaded VM, which suspends host

operation until a VM exit occurs. Returns an error code.

uint64_t sva.getvmreg

(size_t vmid, enum sva_vm_reg reg)

Gets the current value of a guest register whose state is saved and loaded by Shade

on VM entry/exit (i.e., not managed by the processor in the VMCS).

void sva.setvmreg(size_t vmid,

enum sva_vm_reg reg, uint64_t data)

Sets the value of a guest register which is saved/restored by Shade.

int sva.readvmcs

(enum sva_vmcs_field field,

uint64_t *data)

Reads a field in the currently loaded VM’s Virtual Machine Control Structure,

storing the value in *data and returning an error code.

int sva.writevmcs

(enum sva_vmcs_field field,

uint64_t data)

Writes the contents of data to a VMCS field in the currently loaded VM’s VMCS.

Returns an error code.

off of the currently executing processor, respectively. The

sva.freevm() intrinsic deallocates a guest VM so long as it

has been unloaded from the processor.

Guest registers that are not managed by the processor

in the VMCS as part of the atomic save/restore operations

performed during VM entry and exit, such as the general-

purpose and floating-point registers, must be loaded imme-

diately before VM entry and saved immediately after VM

exit by the host. Since VM entry and exit take place within

Shade VM code, Shade initializes a guest’s registers with the

values provided to sva.allocvm(), and stores their values

in SVA VM memory while the guest is not running. The

sva.getvmreg() and sva.setvmreg() intrinsics allow the

hypervisor driver to observe and change these values while

the guest is not running.

From the hypervisor driver’s perspective, the virtual in-

struction for VM entry, sva.runvm() (corresponding to the

native instructions VMLAUNCH and VMRESUME, whichever is
situationally appropriate) has the control-flow semantics of

a normal function call. When the hypervisor calls this virtual

instruction, it relinquishes control to the Shade VM, which

runs the active virtual machine until a VM exit occurs, then

returns to the calling code in the hypervisor. CFI is therefore

maintained in the untrusted hypervisor.

5.2 Protecting Ghost Memory and System Integrity
As Section 2 states, Apparition [19] utilizes run-time checks

in its implementation of the SVA-OS MMU instructions to

prevent a compromised OS kernel from reading and writing

ghost memory and SVA VMmemory. Specifically, it prevents

the kernel from changing page table mappings for virtual ad-

dresses within the protected memory region. This prevents

the OS kernel from making SVA VM memory accessible to

user-space code, or mapping the physical frames correspond-

ing to protected memory into virtual addresses to which the

OS kernel can read and write (namely, the user and kernel

memory regions in Figure 2). As Apparition stores all native

code translations within the SVA VM memory, the OS ker-

nel cannot modify its code pages to be writable and cannot

map new memory frames with arbitrary contents into its

code segment. This prevents the OS kernel from loading new

native code or writing NOP instructions over the SFI and

CFI instructions added by the Apparition VM when trans-

lating virtual instruction set code to native code. Page-table

pages (PTPs) are also located within SVA VM memory to

force the OS to use the SVA-OSMMU instructions to perform

page-table updates. The OS must declare PTPs to Apparition

before use so that Apparition can protect them; the SVA-OS

MMU instructions will refuse to add a page to a page table if

it has not previously been declared as a PTP.

Guest virtual machines running under VMX pose similar

threats to protected memory. A compromised hypervisor

could use extended paging (EPT, described in Section 3) to

map protected memory frames into a guest VM’s physical

address space. The hypervisor could then load native code

into the guest VM which accesses the protected memory,

thereby circumventing Apparition’s protections.

Shade provides SVA-OS virtual instructions (summarized

in Table 2) for configuring extended paging, similar to the

existing SVA-OS instructions for configuring regular page

22

Secure Guest Virtual Machine Support in Apparition VEE ’19, April 14, 2019, Providence, RI, USA

Table 2. Shade SVA-OS Extended Paging Intrinsics

Name Description
void sva.mm.declare.l<1-4>.eptpage

(uintptr_t frameAddr)

Declare a frame to Shade for use as a page-table page in extended paging (EPT).

void sva.mm.update.ept.mapping

(page_entry_t *eptePtr,

page_entry_t val)

Update an entry (add, remove, or update a mapping) in an extended page table.

void sva.mm.load.eptable

(int vmid, pml4e_t *empl4t)

Load the root extended-page-table pointer for a VM.

uintptr_t sva.mm.save.eptable

(int vmid)

Save the current value of the extended-page-table pointer for a VM. Returns the

current contents of the EPT pointer field in the specified VM’s VMCS.

void sva.mm.remove.page

(uintptr_t paddr)

Informs Shade that the system software will no longer be using a page as an

extended page-table page. (This intrinsic is also used for non-extended paging.)

tables [9, 11, 12]. As with regular page tables, the Shade VM

prevents the kernel/hypervisor from writing directly to ex-

tended page table pages, and it prevents guest VMs from

mapping host PTPs (regular and extended) via EPT. This en-

sures that the OS kernel must use the SVA-OS instructions to

configure the extended page tables. Shade’s implementation

of the SVA-OS virtual instructions performs run-time checks

that ensure EPT mappings are not created that would violate

Shade’s security policies. Specifically:

1. Guests may not have EPT mappings to ghost memory.

This prevents theft and corruption of sensitive data

within host applications.

2. Guests may not have EPT mappings to SVA VM mem-

ory. This prevents theft or corruption of data held in

Shade’s data structures. It also prevents guests from

reading or writing the native code of the kernel/hy-

pervisor, host applications, and the Shade VM.

3. Guests may not have mappings to host page-table

pages, whether regular or extended.

5.3 Controlling Privileged Hardware Configuration
Apparition [19] prevents a compromised OS kernel from

reconfiguring privileged hardware in a way that would cir-

cumvent its security enforcement. As it forces the OS kernel

to use SVA-OS virtual instructions to configure privileged

hardware state, either run-time checks in the SVA-OS instruc-

tions prevent insecure configuration of privileged hardware

state, or the SVA-OS instructions themselves provide no way

of expressing an insecure configuration of privileged hard-

ware state. For example, if the OS kernel could clear flags in

the CR0 control register, it could disable hardware memory

protection [21] upon which the Apparition VM relies. How-

ever, as the SVA-OS interface provides no instruction for the

kernel to set or clear flags in CR0, the OS kernel has no way

of thus configuring the processor unsafely.

Because VMX allows guest virtual machines to run native

code directly on the hardware in privileged modes, a compro-

mised kernel could instruct its hypervisor driver to create a

guest that is permitted to change privileged system state in

ways that impact Shade’s security enforcement. VMX allows

hypervisors to configure the conditions that will trigger a

VM exit through controls in VMCS fields (see Section 3) [21].

If, for instance, a VMCS is configured so that a guest VM

does not perform a VM exit when it writes to a privileged

model-specific register (MSR), the value written to that MSR

will persist after VM exit. The Shade VM must ensure that

all privileged state components which can be changed by a

guest are restored to proper host values on VM exit.

VMX provides features which allow safe virtualization of

some privileged state without affecting the corresponding

host state. For example, the privileged CR3 register is virtual-
ized by extended paging and automatically switched between

host and guest values configured in the VMCS on VM entry

and exit. Other privileged state, such as kernel-mode MPX

state used by Apparition to accelerate SFI checks [19], is not

managed by VMX; Shade must save/load such state, as it

does general purpose registers, on VM entry and VM exit.

For any remaining state that is managed neither by VMX

nor Shade (e.g., because it is not incorporated into the design

of a particular implementation of Shade), Shade configures

the VMCS to force a VM exit when a guest VM attempts to

change that state. This is achieved through run-time checks

performed by the sva.writevmcs() intrinsic, which pre-

vent control bits from being set unsafely in fields that deter-

mine whether the use of particular processor features will

cause VM exits. Similar run-time checks are performed by

sva.readvmcs() to ensure that the untrusted hypervisor

may not read sensitive privileged state stored in the VMCS,

such as saved host state fields (see Section 5.1).

5.4 Side-Channel Attacks
Apparition thwarts last-level-cache (LLC) and page-fault side

channel attacks against ghost and SVA VM memory [19].

Shade maintains these protections in the presence of un-

trusted guest VMs.

23

VEE ’19, April 14, 2019, Providence, RI, USA Ethan Johnson, Komail Dharsee, and John Criswell

5.4.1 Last-Level-Cache Side Channels
Apparition [19] uses Intel’s Cache Allocation Technology
(CAT) feature [21] to thwart last-level-cache (LLC) side-

channel attacks. Using CAT, Apparition statically partitions

the LLC so that the OS kernel and the Apparition VM have

their own cache partitions. Apparition also gives each appli-

cation using ghost memory (called a ghosting application) its
own cache partition. Applications not using ghost memory

use the OS kernel’s partition. These protections prevent a

compromised OS kernel from launching LLC side-channel

attacks against ghosting applications and the Apparition VM.

It also prevents both regular and ghosting applications from

attacking other ghosting applications on the system.

Shade must ensure that guest VMs cannot use LLC side-

channel attacks against host ghosting applications and the

Shade VM. In Shade, the hypervisor driver, being part of

the OS kernel, uses the OS kernel’s cache partition. Shade

also places guest VMs within the OS kernel’s cache partition.

This isolates guest VMs’ cache lines from cache lines used

by host ghosting applications and the Shade VM. Shade’s

sva.runvm() intrinsic switches between Shade’s and the

OS’s cache partitions on VM entry and exit.

The Intel VMX extensions [21] permit a hypervisor to con-

figure the VMCS so that code running in the guest OS can re-

configure the Intel CAT partitions. If the guest VM can recon-

figure the cache partitions, it could reconfigure the hardware

so that it and ghosting applications share the same cache

lines, allowing cache side-channel attacks. To mitigate this,

Shade initializes all new VMCS structures that it allocates

so that writing to any of the MSRs that configure Intel CAT

will cause a VM exit. Furthermore, the sva.writevmcs()
intrinsic prevents the hypervisor driver from subsequently

reconfiguring the VMCS to allow guests to write to those

MSRs. With these two protections, guest VMs cannot give

themselves access to the cache lines belonging to ghosting

applications.

5.4.2 Page-Fault Side Channels
Apparition [19] prevents the OS kernel from launching page-

fault side-channel attacks [35, 39] against ghost memory and

SVA VM memory by moving page table pages into the SVA

VM memory. This allows Apparition to prevent reads and

writes to page table pages using its existing SFI instrumen-

tation. Additionally, the SVA-OS MMU instructions do not

allow the OS kernel to read or modify page table entries that

map memory frames into either ghost memory or SVA VM

memory. This prevents the OS kernel from forcing an appli-

cation to page fault when accessing its ghost memory [39]

or from inferring ghost memory page accesses by reading

the accessed and dirty bits in page table entries [35].

Shade likewise prevents code within guest VMs from

launching page-fault side-channel attacks against applica-

tions using ghost memory. Since Shade prevents the OS

Table 3. Shade TCB Size

Component Apparition
SLOC [19]

Shade SLOC

Compiler Passes 1,018 1,018

SVA-OS Instructions 5,823 9,093

Total 6,841 10,111

kernel from mapping host page tables into the guest VM’s

address space, the guest VM cannot read or write host page

table entries and therefore cannot launch page-fault side-

channel attacks [35, 39] against host applications.

As an additional line of defense against page-fault side-

channel attacks, Apparition [19] disables on-demand alloca-

tion of physical memory for ghost memory to prevent the

OS from inferring a ghosting application’s memory access

patterns by observing when the Apparition VM requests

physical memory from the OS. Instead, physical memory is

mapped when an application requests that virtual address

space within ghost memory be allocated. Shade does not

affect this enhancement.

6 Implementation
We implemented Shade by extending the existing source

code for Apparition [19] which is built for 64-bit x86 systems.

Shade uses LLVM 3.1. We used the FreeBSD 9.0 kernel ported

to the SVA virtual instruction set [10, 11, 19]. The Shade SVA-

OS instructions are written in C and assembly code while

the LLVM compiler passes are written in C++.

Table 3 shows the TCB size of Apparition and Shade; the

Apparition sizes were reported by Dong et al. [19] while we
measured the TCB size of Shade using sloccount [38]. The

Apparition source code contains the combined source code

of KCoFI [10], Virtual Ghost [11], Apparition [19], and the

experimental Apparition system used to evaluate Spectre-

resistant SFI [18]. Shade contains all of the code for these

systems plus the additional code for VMX support.

Our own measurements confirm that the compiler passes

for Apparition and Shade have the same size; this is expected

as Shade does not modify the LLVM compiler passes used to

implement SFI and CFI for Apparition. However, Shade in-

creases the size of the SVA-OS instructions by 56%, increasing

the overall TCB size by 48%. There are three reasons for the

increase of TCB size despite the simplicity of Shade’s code.

First, Apparition’s TCB was quite small in absolute terms.

Second, there is a significant amount of state to save/restore

on VM entry/exit; there are roughly 2-4 lines of code for

each piece of CPU state. Third, the VMX extensions have

numerous configurable options. This leads to large switch

statements in Shade’s code to implement the run-time checks

and structure definitions with many field members.

To evaluate and guide the design of Shade’s virtual instruc-

tions supporting VMX use by hypervisors, we developed a

24

Secure Guest Virtual Machine Support in Apparition VEE ’19, April 14, 2019, Providence, RI, USA

minimalist “toy” hypervisor using the Shade API which al-

lowed us to directly test basic VMX operations without the

complexity of a full hypervisor. This hypervisor is capable of

constructing simple guest VMs, allocating memory to them

using EPT, and loading program code into them to be run in

guest mode. It is able to run VMs and automatically handle

a selection of VM exits, such as directing external interrupts

to the host OS as appropriate and manipulating a guest’s

state to emulate privileged instructions. We employed this

toy hypervisor to support the hypervisor benchmarks we

performed in our evaluation (Section 7.2).

In addition to the state saved/restored by the processor

on VM entry/exit (Section 3.1), some fields must be saved/re-

stored by the hypervisor to support their use in guests. We

support the subset of these fields necessary to support our

benchmarks and some future work (Section 9). These include

the general purpose registers, FXSAVE-managed FPU state,

CR2, XCR0, MPX bounds registers, and IA32_BNDCFGS.

7 Evaluation
For our experiments, wemeasured the performance overhead

that Shade’s run-time checks induce. We specifically sought

to quantify two potential areas of impact:

1. Impact on host performance. Shade’s addition of

VMX support left most of Apparition’s SVA-OS in-

structions unchanged, but some enhancements were

made to the existing MMU instructions to facilitate

EPT support.

2. Impact on hypervisor performance. Ideally, the
run-time checks performed by Shade’s implementa-

tion of the new virtual instructions to support VMX

(see Section 5) should not impose significant overhead

on the basic operations performed by a hypervisor.

We used the LMBench [27] microbenchmarks to measure

Shade’s impact on host kernel performance (Section 7.1)

and developed microbenchmarks for key VMX operations to

measure the impact on hypervisor performance (Section 7.2).

For all of our experiments, we used a Dell Precision T3620

workstation. This machine has a sixth generation Intel®

Core™ i7-6700 processor (four cores at 3.4 GHz with 8 MB

of cache), 16 GB 2133 MHz DDR4 memory, a 256 GB SATA

SSD, and a 500 GB SATA 7,200 RPM hard drive.

7.1 Host Kernel Microbenchmarks
To evaluate the impact of Shade’s run-time checks on host

kernel performance, we ran LMBench under five different

configurations:

• Baseline FreeBSD 9.0 kernel

• Shade, no VMX checks, non-ghosting (NC-NG)
• Shade, no VMX checks, ghosting (NC-G)
• Shade, with VMX checks, non-ghosting (C-NG)
• Shade, with VMX checks, ghosting (C-G)

The baseline native x86-64 FreeBSD 9.0 kernel was com-

piled with the same Clang compiler and compiler optimiza-

tions used when compiling the Shade FreeBSD 9.0 kernel;

the only difference in compiler settings is that Shade’s SFI

and CFI instrumentation are not applied to the native kernel.

The configurations labeled “ghosting” run LMBench under

a modified libc that allocates heap objects in secure ghost

memory instead of traditional user-space memory. This al-

lows us to test the impact of security checks and changes

to kernel behavior that only affect applications that utilize

ghost memory. Notably, although the original Apparition

paper [19] ran a similar suite of LMBench benchmarks, it

did not run them in ghosting mode. Thus, our evaluation

provides additional insight into Apparition’s performance

in areas unmodified by Shade.

We measured kernel performance both with all of Shade’s

security checks intact, and with checks specifically related to

VMX disabled. From the perspective of applications like LM-

Bench which do not utilize VMX, Shade sans VMX-specific

checks is essentially just Apparition; this allows us to observe

any performance impact Shade adds beyond Apparition, in

addition to comparing to the native baseline FreeBSD kernel.

We used the version of LMBench available in the FreeBSD

9.0 ports tree. We selected the benchmarks that measure the

latency of OS kernel features. We configured the benchmarks

to run for 1,000 repetitions under their default configurations

except as follows:

• We configured the lat_mmap benchmark to map the

first 1 MB region of a randomly generated file located

on the SSD; we collected data from the /dev/urandom
device to create the file’s contents.

• We configured the lat_pagefault benchmark to map

a file of about 10 MB in size (located on the SSD) into

memory and access it with a 256 KB stride.

• We ran the pipe benchmark, lat_pipe, for 10 repeti-
tions. This benchmark takes longer to execute than

most of the others; this change allows the benchmark

to complete in a reasonable amount of time.

• We ran the lat_pagefault benchmark for 10,000 rep-

etitions to reduce experimental error.

• We omitted the lat_ctx context switching bench-

mark because a bug in our Shade prototype sometimes

causes the kernel to crash.

Table 4 shows the results of the LMBench benchmarks. We

show the arithmetic mean of the execution time (in microsec-

onds) of the baseline FreeBSD 9.0 kernel and the normalized

runtimes for the aforementioned configurations of Shade.

The standard deviation is expressed as a percentage of the

arithmetic mean execution time.

Our results show that the VMX-specific run-time checks

that Shade adds to Apparition have no significant impact

on the kernel’s performance for applications that do not

utilize VMX (i.e., Shade-NC-NG is similar to Shade-C-NG,

25

VEE ’19, April 14, 2019, Providence, RI, USA Ethan Johnson, Komail Dharsee, and John Criswell

Table 4. LMBench Performance Results

Test FreeBSD 9.0 Shade-NC-NG Shade-NC-G Shade-C-NG Shade-C-G
Mean (µs) Std.

Dev.

Normalized

Runtime

Std.

Dev.

Normalized

Runtime

Std.

Dev.

Normalized

Runtime

Std.

Dev.

Normalized

Runtime

Std.

Dev.

nullSyscall 0.1021 0.07% 6.69× 0.01% 6.69× 0.01% 6.69× 0.01% 6.69× 0.01%

write 0.1311 0.79% 5.63× 0.01% 6.06× 0.02% 5.63× 0.02% 6.06× 0.02%

read 0.1679 0.51% 6.03× 0.01% 6.36× 0.02% 6.03× 0.01% 6.36× 0.03%

sigInstall 0.1864 0.11% 6.63× 0.01% 6.63× 0.01% 6.63× 0.01% 6.63× 0.01%

pgFault 0.8778 10.28% 1.38× 4.20% 1.41× 7.02% 1.44× 3.98% 1.40× 5.29%

sigDeliver 1.2779 0.04% 1.80× 0.07% 1.80× 0.08% 1.81× 3.35% 1.79× 0.03%

stat 1.5153 0.10% 1.98× 0.05% 2.02× 0.08% 1.98× 0.06% 2.02× 0.04%

openClose 1.8528 0.23% 2.05× 0.33% 2.14× 5.17% 2.05× 0.19% 2.09× 0.14%

pipe 4.0589 0.93% 1.41× 0.19% 137.97× 0.10% 1.41× 0.26% 136.93× 0.10%

fcntl 4.9550 1.08% 1.61× 1.17% 111.93× 0.04% 1.61× 0.33% 112.04× 0.05%

mmap 8.8076 0.26% 2.61× 0.00% 2.61× 0.00% 2.66× 2.21% 2.63× 1.82%

select 14.8543 0.53% 1.37× 0.02% 1.37× 0.02% 1.37× 0.10% 1.37× 0.01%

forkExit 71.0459 0.17% 3.14× 1.11% 58.17× 0.03% 3.13× 0.66% 58.55× 0.06%

forkExec 79.3289 0.25% 3.04× 0.67% 51.83× 0.05% 3.03× 0.67% 52.19× 0.08%

forkShell 663.5778 0.12% 2.27× 0.33% 20.23× 0.16% 2.29× 0.31% 20.31× 0.12%

and Shade-NC-G is similar to Shade-C-G). This was in line

with our expectations since the VMX-related code added to

existing instructions is small and computationally simple.

The majority of the code added by Shade supports virtual

instructions specifically geared to hypervisors.

In general, our results show that system calls with small

execution times (such as the null system call test and read-

/write) suffer a larger relative performance overhead com-

pared to longer-running operations. However, the most no-

table finding is that tests that incorporate the fork() sys-

tem call (forkExit, forkExec, forkShell, pipe, and fcntl) suffer
dramatic overheads when they use ghost memory for heap

allocations (Shade-NC-G and Shade-C-G).
Our investigation of this issue indicates that Apparition’s

side-channel defenses are responsible for these large over-

heads. When we disabled page-fault side-channel defenses

(which maps physical frames to ghost memory virtual ad-

dresses at allocation time to prevent the OS from inferring

application access patterns by observing page faults), the

majority of the overhead compared to the non-ghosting con-

figurations (Shade-NC-NG and Shade-C-NG) disappears.
Furthermore, disabling Shade’s last-level-cache side-channel

defenses (i.e., cache partitioning using Intel CAT) eliminates

the remainder of the discernible overhead, leaving perfor-

mance comparable to the non-ghosting configurations.

We emphasize that these overheads are part of the original

Apparition [19] system and not due to the enhancements

made by Shade; this is clear from the fact that the C configu-

rations (with Shade’s VMX-related checks) perform compara-

bly to the NC configurations (representing the latest version

of Apparition). The original paper on Apparition [19] did

not evaluate LMBench [27] using ghost memory.

7.2 Hypervisor Microbenchmarks
To measure the impact of the security checks performed

by the new SVA-OS instructions that we have added to cre-

ate Shade, we created microbenchmarks for the basic VMX

operations our instructions provide.

For our baseline, we recompiled the SVA-OS library that

implements the SVA-OS instructions with all VMX-related

security checks disabled at compile time. We examined the

open-source code of three real-world hypervisors (FreeBSD’s

bhyve [2], Linux’s KVM [22], and the FreeBSD edition of

VirtualBox [31]) and observed that they all incorporate low-

level abstraction layers that encapsulate the assembly code

performing raw VMX operations to provide a more conve-

nient interface to the rest of the hypervisor. We believe that

Shade’s SVA-OS runtime library compiled without VMX-

related security checks provides an interface comparable

in abstraction level and overhead to a typical non-Shade-

based hypervisor’s low-level hardware abstraction layer and

therefore serves as a viable baseline for microbenchmarks.

Because our baseline presents the same API as Shade’s intrin-

sics, we can perform a head-to-head comparison between

Shade and the baseline without capturing unrelated differ-

ences in performance due to abstraction layer design.

Our baseline thus reflects a hypothetical Apparition sys-

tem that unsafely uses native VMX operations directly (cir-

cumventing SVA’s security model), in the manner that a

typical hypervisor would use them (via calls to assembly

code in its low-level abstraction layer). This is equivalent

26

Secure Guest Virtual Machine Support in Apparition VEE ’19, April 14, 2019, Providence, RI, USA

Table 5. Hypervisor Microbenchmark Results

Test Baseline Shade
Arithmetic

Mean

Std.

Dev.

Normalized

Runtime

Std.

Dev.

Create/destroy

VM

0.50 µs 0.03% 1.00× 0.03%

VM entry/exit 6.5 µs 0.01% 1.01× 0.00%

VMCS read 0.12 µs 0.02% 1.02× 0.01%

VMCS write 0.12 µs 0.01% 1.03× 0.01%

to the Shade-NC-* configurations evaluated in Section 7.1.

We compare this against the overheads exhibited by Shade,

wherein our safe (checked) virtual instructions are used in

place of those unchecked low-level routines.

These microbenchmarks measure the overheads of indi-

vidual operations provided by our VMX virtual instructions

in isolation; the actual runtimes reported (in µs) should be

interpreted with this in mind. They provide a useful measure

of the impact of our checks, but may not be comparable to

the runtimes of similar high-level operations in commodity

hypervisors, which perform those operations in the context

of larger software systems and may need to perform other

tasks that would dominate their runtime (bookkeeping, con-

figuring virtual devices, etc.).

7.2.1 Benchmark Design and Environment
We created four hypervisor microbenchmarks and ran them

under both Shade and the aforedescribed baseline system.

Table 5 summarizes the results. Each experiment was run 10

times for an experiment-specific number of iterations (speci-

fied below), and its runtime, in clock cycles, was measured

using the CPU’s timestamp counter (TSC). The Intel® Core™

i7-6700 processor provides a constant-rate TSC which mea-

sures real time (although we additionally disabled the CPU’s

clock frequency scaling in the BIOS to reduce experimental

noise); we observed that our processor’s TSC increments by

approximately 3.4115 ∗ 109 ticks in one second, i.e., 3.4115
GHz, from which we can convert from TSC ticks to microsec-

onds.

To further reduce experimental noise, we ran 10 untimed

iterations of each benchmark loop prior to running the timed

iterations to “warm up” any relevant CPU or OS caches that

might otherwise yield nondeterministic performance. We

ran each experiment immediately after booting the system,

first running the full benchmark suite once as a warm-up

and then a second time for the recorded experiments.

Create/destroy VM This benchmark tests the Shade intrin-

sics sva.allocvm() and sva.freevm(). Each round of the

benchmark sets up a new VM and then immediately frees it.

VM setup performed by sva.allocvm() includes allocating

a physical page for the VM’s VMCS, initializing it using the

hardware instruction VMCLEAR, and setting up data structures

in the Shade VM to track the guest system’s saved registers

between runs. (These same steps are performed, sans se-

curity checks, in the baseline version, as they correspond

to steps a typical non-Shade-based hypervisor’s low-level

hardware abstraction layer would likewise perform to set up

a new VM.) We performed 10,000,000 iterations of this test

in each run of the experiment (which, as noted above, was

performed 10 times overall in the full suite).

VM entry/exit VM entry and exit were tested using our

toy hypervisor implementation described in Section 6. The

timed portion of the benchmark measures entry/exit round-

trip latency using sva.runvm() on an already-created and

previously-launched VM (i.e., using the hardware instruc-

tion VMRESUME). The guest used in this scenario runs an in-

finite loop consisting of two instructions: VMCALL, which
performs an intentional VM exit (hypercall), and an uncon-

ditional jump back to the VMCALL to implement the infinite

loop. The toy hypervisor handles VMCALL exits by using

sva.readvmcs() to determine the exit reason and read the

guest’s current instruction pointer, then sva.writevmcs()
to increment the instruction pointer to skip over the VMCALL.
Each run of this test performed 1,000,000 iterations. The toy

hypervisor distinguishes between VM exits due to external

interrupts (which we handled by allowing the host OS to

service the interrupt, then immediately resuming the VM)

and exits incident to guest events; we counted only guest-

initiated exits (i.e., those due to VMCALL) in the number of

test iterations performed.

VMCS read We tested the sva.readvmcs() intrinsic’s per-
formance by repeatedly reading from the Guest RIP VMCS

field of a VM which had been previously created and loaded

onto the processor. Each run performed 10,000,000 iterations.

VMCS write We tested the sva.writevmcs() intrinsic’s

performance by repeatedly writing to the Guest RIP VMCS

field of a VM which had been previously created and loaded

onto the processor. Each run performed 10,000,000 iterations.

7.2.2 Observations
As shown in Table 5, we did not observe significant overheads

when checks were enabled on the VMX operations provided

by Shade’s intrinsics. Where we observed statistically sig-

nificant overheads, they were within a range of 1–3%. We

do not expect overheads at these levels to have a significant

impact on overall real-world hypervisor performance.

8 Related Work
The Low Level Virtual Architecture (LLVA) [4] was the first

to explore the use of LLVM IR as the interface between

software and the processor; it primarily focused on user-

space computation. Later work [5] added support for vector

instructions to the virtual instruction set. Extensions to LLVA

(dubbed LLVA-OS) added instructions to support an entire

27

VEE ’19, April 14, 2019, Providence, RI, USA Ethan Johnson, Komail Dharsee, and John Criswell

commodity operating system kernel (initially Linux [14] and

later FreeBSD [10, 11]). SVA [13] built upon prior LLVAwork

to enforce security policies across the entire system stack;

Criswell et al. [12] studied the security implications of the

LLVA-OS (now dubbed SVA-OS) instructions in the context

of enforcing memory safety. Later work on KCoFI [10] and

Virtual Ghost [11] explored how the SVA-OS instructions

could be misused to violate control flow integrity or to attack

applications running on top of the OS kernel. Apparition [19]

protects applications from page-fault and last-level-cache

side-channel attacks launched by compromised OS kernels.

The early work on SVA-OS [10–12] demonstrates two

key methods of preventing attacks via abuse of the SVA-OS

instructions: preventing expression of malicious behavior

via the interface exposed by the SVA-OS instructions and

adding run-time checks to the implementation of the SVA-OS

instructions to detect malicious behaviors. Our work applies

these same principles to providing VMX support to software.

Other defenses for page-fault side-channel attacks can mit-

igate attacks launched by guest VMs, but they make different

tradeoffs than Shade. T-SGX [34] encapsulates software run-

ning within an Intel SGX enclave within hardware transac-

tions. If the protected software triggers a page fault or other

trap, the transaction aborts, preventing the OS kernel from

observing the trap. Apparition [19] and Shade induce lower

overhead than T-SGX. Déjà Vu [8] enables applications run-

ning within Intel SGX to detect whether their execution time

is longer than expected; such increases in execution time are

assumed to be due to page-fault and similar attacks from the

OS kernel. Shade prevents page-fault side-channel attacks

whereas Déjà Vu only detects them. Unlike T-SGX [34] and

Déjà Vu [8], Apparition [19] and Shade fix the root cause of

page-fault side channels by preventing the OS kernel from

reading and writing PTPs that map sensitive information.

Several approaches exist for mitigating LLC side channels.

One approach is to partition the cache. Shade currently parti-

tions the LLC statically to mitigate LLC side-channel attacks.

The processor could provide support for dynamic cache par-

titioning algorithms like SecDCP [37] that could provide the

same security but with better performance for workloads

with changing cache needs. Another approach is to change

the cache’s refill and eviction policies. SHARP [40] modi-

fies the processor’s cache line eviction policy to minimize

evictions within private caches that are caused by memory

behavior on other cores that cause evictions of the victim’s

cache line in the shared caches. The Random Fill Cache Archi-

tecture [24] fetches random lines into the cache that are near

to the cache line requested by software. These approaches

could be used but, to the best of our knowledge, are not

available on commodity processors. A third approach is to

permit LLC side channels but to prevent software from mea-

suring time accurately enough to use them. TimeWarp [25]

modifies the processor so that the timestamp counter, perfor-

mance counters, and interrupts do not yield enough timing

information. However, it allows privileged software, such as

the OS kernel, to read accurate time information and would

therefore not work under Shade’s threat model.

9 Future Work
Several directions exist for future work. First, we plan to

port existing kernel-level hypervisor software to our SVA

virtual instruction set. Candidates include FreeBSD’s bhyve

kernel driver [2] and VirtualBox [31]. Such a porting effort

will help us study the performance effects of using a virtual

instruction set on hardware VM performance when running

real virtual machine workloads.

Second, wewill investigate whether it is possible to protect

guest VMs from the host OS just as Shade protects host

applications from the host OS and guest VMs. Supporting

features such as host virtualization of I/O devices will provide

challenges as such features inherently give the host OS some

control over guest VMs.

Third, Dharsee et al. [15, 16] studied security-critical pro-

cessor bugs and devised a design that utilizes SVA’s control

over native code generation to prevent software from trig-

gering known processor bugs. With our new SVA-OS instruc-

tions, we can build a system that prevents software from

triggering bugs in Intel processors’ VMX extensions [32, 33].

10 Conclusions
The Apparition [19] compiler-based virtual machine pro-

vides an efficient way to protect applications running under

commodity operating systems from side-channel attacks by

a compromised kernel, but cannot maintain those protec-

tions in the presence of a hypervisor driver within the OS to

support hardware-based guest virtual machines. We present

Shade, an extension of Apparition that adds support for hy-

pervisors operating within the untrusted OS kernel without

compromising Apparition’s protection of user-space applica-

tions. Shade provides a virtual instruction set interface that

allows hypervisor drivers to access the hardware virtualiza-

tion support afforded by Intel’s VMX processor extensions.

We evaluated the performance impacts of our extensions

and confirmed that the security checks performed by the

new virtual instructions should not have a significant im-

pact on hypervisor performance, nor on the performance

of the existing Apparition system on the host. Our perfor-

mance evaluation also uncovers and explores surprising and

interesting performance impacts of the original Apparition

system on kernel performance for protected host applica-

tions which were not discovered in prior work.

Acknowledgements
We thank the anonymous reviewers and Isaac Richter for

their insightful feedback. This work was supported by NSF

Awards CNS-1629770 and CNS-1618213.

28

Secure Guest Virtual Machine Support in Apparition VEE ’19, April 14, 2019, Providence, RI, USA

References
[1] 2017. AMD64 Architecture Programmer’s Manual. Advanced Micro

Devices.

[2] 2018. FreeBSD Handbook. https://www.freebsd.org/doc/handbook/
index.html Revision 52666.

[3] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009.

Control-Flow Integrity Principles, Implementations, and Applications.

ACM Transactions on Information Systems Security 13, Article 4 (No-

vember 2009), 40 pages. Issue 1.

[4] Vikram Adve, Chris Lattner, Michael Brukman, Anand Shukla, and

Brian Gaeke. 2003. LLVA: A Low-level Virtual Instruction Set Ar-

chitecture. In Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-36). IEEE Computer Society,

Washington, DC, USA, 205–216. http://dl.acm.org/citation.cfm?id=
956417.956545

[5] Robert L. Bocchino, Jr. and Vikram S. Adve. 2006. Vector LLVA: A

Virtual Vector Instruction Set for Media Processing. In Proceedings of
the 2nd International Conference on Virtual Execution Environments
(VEE ’06). ACM, New York, NY, USA, 46–56. https://doi.org/10.1145/
1134760.1134769

[6] D. P. Bovet and Marco Cesati. 2003. Understanding the LINUX Kernel
(2
nd

ed.). O’Reilly, Sebastopol, CA.

[7] Stephen Checkoway and Hovav Shacham. 2013. Iago Attacks: Why the

System Call API is a Bad Untrusted RPC Interface. In Proceedings of the
18th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’13). ACM, New York, NY,

USA, 253–264. https://doi.org/10.1145/2451116.2451145
[8] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian

Zhang. 2017. Detecting Privileged Side-Channel Attacks in Shielded

Execution with Déjà Vu. In Proceedings of the 2017 ACM Asia Confer-
ence on Computer and Communications Security (ASIA CCS’17). 7–18.
https://doi.org/10.1145/3052973.3053007

[9] John Criswell. 2014. Secure Virtual Architecture: Security for Commodity
Software Systems. Ph.D. Dissertation. Computer Science Department,

University of Illinois at Urbana-Champaign, Urbana, IL.

[10] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI:

Complete Control-Flow Integrity for Commodity Operating System

Kernels. In Proceedings of the 35th IEEE Symposium on Security and
Privacy (SP’14). San Jose, CA, 292–307. https://doi.org/10.1109/SP.
2014.26

[11] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. Virtual

Ghost: Protecting Applications from Hostile Operating Systems. In

Proceedings of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’14). 81–96.
https://doi.org/10.1145/2541940.2541986

[12] John Criswell, Nicolas Geoffray, and Vikram Adve. 2009. Memory

Safety for Low-level Software/Hardware Interactions. In Proceedings
of the 18th USENIX Security Symposium (Security’09). 83–100. http:
//dl.acm.org/citation.cfm?id=1855768.1855774

[13] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve.

2007. Secure Virtual Architecture: A Safe Execution Environment for

Commodity Operating Systems. In Proceedings of the 21st ACM SIGOPS
Symposium on Operating Systems Principles (SOSP’07). Stevenson, WA,

351–366. https://doi.org/10.1145/1294261.1294295
[14] John Criswell, Brent Monroe, and Vikram Adve. 2006. A Virtual

Instruction Set Interface for Operating System Kernels. InWorkshop
on the Interaction between Operating Systems and Computer Architecture.
Boston, MA, USA, 26–33.

[15] Komail Dharsee, Ethan Johnson, and John Criswell. 2017. Hardware
Vulnerability and Mitigation Survey. Technical Report TR 1000. http:
//hdl.handle.net/1802/32871

[16] Komail Dharsee, Ethan Johnson, and John Criswell. 2017. A Soft-

ware Solution for Hardware Vulnerabilities. In 2017 IEEE Cybersecurity
Development (SecDev). 27–33. https://doi.org/10.1109/SecDev.2017.18

[17] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. 2006. SAFE-

Code: Enforcing Alias Analysis for Weakly Typed Languages. In ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation. Ottawa, Canada.

[18] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox, and Sandhya

Dwarkadas. 2018. Spectres, Virtual Ghosts, and Hardware Support.

In Proceedings of the 7th International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP’18). ACM, New

York, NY, USA, Article 5, 9 pages. https://doi.org/10.1145/3214292.
3214297

[19] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L. Cox, and Sand-

hya Dwarkadas. 2018. Shielding Software From Privileged Side-

Channel Attacks. In Proceedings of the 27th USENIX Security Sym-
posium (Security’18). 1441–1458. https://www.usenix.org/conference/
usenixsecurity18/presentation/dong

[20] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High-

Resolution Side Channels for Untrusted Operating Systems. In Proceed-
ings of the 2017 USENIX Annual Technical Conference (USENIX ATC’17).
USENIX Association, Santa Clara, CA, 299–312. https://www.usenix.
org/conference/atc17/technical-sessions/presentation/hahnel

[21] Intel Corporation 2016. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual. Intel Corporation.

[22] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.

2007. kvm: the Linux Virtual Machine Monitor. In Proceedings of the
Linux Symposium, Vol. 1. Ottawa, Ontario, Canada, 225–230. https:
//www.kernel.org/doc/mirror/ols2007v1.pdf#page=225

[23] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO’04). Palo Alto, CA,

75–86. http://dl.acm.org/citation.cfm?id=977395.977673
[24] Fangfei Liu and Ruby B. Lee. 2014. Random Fill Cache Architecture.

In Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’14). 203–215. https://doi.org/10.1109/
MICRO.2014.28

[25] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. Time-

Warp: Rethinking Timekeeping and Performance Monitoring Mech-

anisms to Mitigate Side-channel Attacks. In Proceedings of the 39th
Annual International Symposium on Computer Architecture (ISCA’12).
118–129. http://dl.acm.org/citation.cfm?id=2337159.2337173

[26] Marshall Kirk McKusick, George V. Neville-Neil, and Robert N. M.

Watson. 2015. The Design and Implementation of the FreeBSD Operating
System (second ed.). Pearson Education.

[27] Larry McVoy and Carl Staelin. 1996. lmbench: Portable Tools for

Performance Analysis. In Proceedings of the USENIX Annual Technical
Conference (ATC). San Diego, CA, 23–23. http://dl.acm.org/citation.
cfm?id=1268299.1268322

[28] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve

Zdancewic. 2009. SoftBound: Highly Compatible and Complete Spatial

Memory Safety for C. In Proceedings of the 2009 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI ’09).
ACM, New York, NY, USA, 245–258. https://doi.org/10.1145/1542476.
1542504

[29] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve

Zdancewic. 2010. CETS: Compiler Enforced Temporal Safety for C. In

Proceedings of the 2010 International Symposium on Memory manage-
ment (ISMM ’10). ACM, New York, NY, USA, 31–40.

[30] Oracle Corporation. 2018. Oracle® VM VirtualBox® User Manual.

https://www.virtualbox.org/manual/UserManual.html
[31] Oracle Corporation. 2018. VirtualBox. https://www.virtualbox.org
[32] Intel Corporation. 2017. 6th Generation Intel® Processor Fam-

ily Specification Update. http://www.intel.com/content/
dam/www/public/us/en/documents/specification-updates/
desktop-6th-gen-core-family-spec-update.pdf

29

https://www.freebsd.org/doc/handbook/index.html
https://www.freebsd.org/doc/handbook/index.html
http://dl.acm.org/citation.cfm?id=956417.956545
http://dl.acm.org/citation.cfm?id=956417.956545
https://doi.org/10.1145/1134760.1134769
https://doi.org/10.1145/1134760.1134769
https://doi.org/10.1145/2451116.2451145
https://doi.org/10.1145/3052973.3053007
https://doi.org/10.1109/SP.2014.26
https://doi.org/10.1109/SP.2014.26
https://doi.org/10.1145/2541940.2541986
http://dl.acm.org/citation.cfm?id=1855768.1855774
http://dl.acm.org/citation.cfm?id=1855768.1855774
https://doi.org/10.1145/1294261.1294295
http://hdl.handle.net/1802/32871
http://hdl.handle.net/1802/32871
https://doi.org/10.1109/SecDev.2017.18
https://doi.org/10.1145/3214292.3214297
https://doi.org/10.1145/3214292.3214297
https://www.usenix.org/conference/usenixsecurity18/presentation/dong
https://www.usenix.org/conference/usenixsecurity18/presentation/dong
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=225
https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=225
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1109/MICRO.2014.28
http://dl.acm.org/citation.cfm?id=2337159.2337173
http://dl.acm.org/citation.cfm?id=1268299.1268322
http://dl.acm.org/citation.cfm?id=1268299.1268322
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1542476.1542504
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/desktop-6th-gen-core-family-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/desktop-6th-gen-core-family-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/desktop-6th-gen-core-family-spec-update.pdf

VEE ’19, April 14, 2019, Providence, RI, USA Ethan Johnson, Komail Dharsee, and John Criswell

[33] Intel Corporation. 2017. 7th Generation Intel® Processor Fam-

ily Specification Update. https://www.intel.com/content/
dam/www/public/us/en/documents/specification-updates/
7th-gen-core-family-spec-update.pdf

[34] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017.

T-SGX: Eradicating Controlled-Channel Attacks Against Enclave Pro-

grams. In Proceedings of the Network and Distributed System Security
Symposium (NDSS).

[35] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and

Raoul Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy

Page Table-Based Attacks on Enclaved Execution. In Proceedings of
the 26th USENIX Security Symposium (SEC’17). USENIX Association,

1041–1056. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/van-bulck

[36] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-

ham. 1993. Efficient Software-Based Fault Isolation. In Proceedings of
the 14th ACM Symposium on Operating Systems Principles (SOSP’93).
Asheville, NC, 203–216. https://doi.org/10.1145/168619.168635

[37] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers, and

G. Edward Suh. 2016. SecDCP: Secure Dynamic Cache Partitioning for

Efficient Timing Channel Protection. In Proceedings of the 53rd Annual
Design Automation Conference (DAC ’16). ACM, New York, NY, USA,

Article 74, 6 pages. https://doi.org/10.1145/2897937.2898086
[38] David A. Wheeler. 2014. SLOCCount. http://www.dwheeler.com/

sloccount/
[39] Y. Xu, W. Cui, and M. Peinado. 2015. Controlled-Channel Attacks:

Deterministic Side Channels for Untrusted Operating Systems. In 2015
IEEE Symposium on Security and Privacy. 640–656. https://doi.org/10.
1109/SP.2015.45

[40] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas.

2017. Secure Hierarchy-Aware Cache Replacement Policy (SHARP):

Defending Against Cache-Based Side Channel Atacks. In Proceedings
of the 44th Annual International Symposium on Computer Architecture
(ISCA’17). 347–360. https://doi.org/10.1145/3079856.3080222

30

https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/7th-gen-core-family-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/7th-gen-core-family-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/7th-gen-core-family-spec-update.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/2897937.2898086
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1145/3079856.3080222

	Abstract
	1 Introduction
	2 Apparition
	3 Intel Virtualization Extensions
	3.1 Basic VMX Operation
	3.2 Extended Paging

	4 Threat Model
	5 Design
	5.1 Control Flow Integrity
	5.2 Protecting Ghost Memory and System Integrity
	5.3 Controlling Privileged Hardware Configuration
	5.4 Side-Channel Attacks

	6 Implementation
	7 Evaluation
	7.1 Host Kernel Microbenchmarks
	7.2 Hypervisor Microbenchmarks

	8 Related Work
	9 Future Work
	10 Conclusions
	References

