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Abstract—Remote code disclosure attacks threaten embedded
systems as they allow attackers to steal intellectual property or
to find reusable code for use in control-flow hijacking attacks.
Execute-only memory (XOM) prevents remote code disclosures,
but existing XOM solutions either require a memory management
unit that is not available on ARM embedded systems or incur
significant overhead.

We present PicoXOM: a fast and novel XOM system for
ARMv7-M and ARMv8-M devices which leverages ARM’s Data
Watchpoint and Tracing unit along with the processor’s simplified
memory protection hardware. On average, PicoXOM incurs
0.33% performance overhead and 5.89% code size overhead on
two benchmark suites and five real-world applications.

I. INTRODUCTION

Remote code disclosure attacks threaten computer sys-
tems. Remote attackers exploiting buffer overread vulnera-
bilities [41] can not only steal intellectual property (e.g.,
proprietary application code, for reverse engineering), but
also leak code to locate gadgets for advanced code reuse
attacks [37], thwarting code layout diversification defenses like
Address Space Layout Randomization (ASLR) [32]. Embed-
ded Internet-of-Things (IoT) devices exacerbate the situation;
many of these microcontroller-based systems have the same
Internet connectivity as desktops and servers but rarely employ
protections against attacks [23], [36]. Given the ubiquity of
these embedded devices in industrial production and in our
lives, making them immune to code disclosure attacks is
crucial.

Recent research [7]–[9], [11], [14], [18]–[20], [26], [33],
[44] implements execute-only memory (XOM) to defend
against code disclosure attacks. Despite being unable to pre-
vent code pointer leakage from data regions such as heaps
and stacks, XOM enforces memory protection on the code
region so that instruction fetching is allowed but reading or
writing instructions as data is disallowed. This simple and
effective defense, however, is not natively available on low-end
microcontrollers. For example, the ARMv7-M and ARMv8-
M architectures used in mainstream devices support memory
protection but not execute-only (XO) permissions [4], [5].
uXOM [26] implements XOM on ARM embedded systems
but incurs significant performance and code size overhead
(7.3% and 15.7%, respectively) as it transforms most load
instructions into special unprivileged load instructions. Given
embedded systems’ real-time constraints and limited memory
resources, a practically ideal XOM solution should have close-
to-zero performance penalty and minimal memory overhead.

This paper presents PicoXOM, a fast and novel XOM
system for ARMv7-M and ARMv8-M devices using a memory
protection unit (MPU) and the Data Watchpoint and Tracing
(DWT) unit [4], [5]. PicoXOM uses the MPU to enforce
write protection on code and uses the unique address range
matching capability of the DWT unit to control read access
to the code region. On a matched access, the DWT unit
generates a debug monitor exception indicating an illegal
code read, while unmatched accesses execute normally without
slowdown. As PicoXOM disallows all read accesses to the
code segment, it includes a minimal compiler change that
removes all data embedded in the code segment.

We built a prototype of PicoXOM and evaluated it on an
ARMv7-M board with two benchmark suites and five real-
world embedded applications. Our results show that PicoXOM
adds negligible performance overhead of 0.33% and only has
a small code size increase of 5.89% while providing strong
protection against code disclosure attacks.

To summarize, our contributions are:
• PicoXOM: a novel method of utilizing the ARMv7-M

and ARMv8-M debugging facilities to implement XOM.
To the best of our knowledge, this is the first use of ARM
debug features for security purposes.

• A prototype implementation of PicoXOM on ARMv7-M.
• An evaluation of PicoXOM’s performance and code size

impact on the BEEBS benchmark suite, the CoreMark-
Pro benchmark suite, and five real-world embedded appli-
cations, showing that PicoXOM only incurs 0.33% run-
time overhead and 5.89% code size overhead.

The rest of the paper is organized as follows. Section II
provides background information on ARMv7-M and ARMv8-
M. Section III describes our threat model and assumptions.
Sections IV and VI present the design and implementation
of PicoXOM, respectively. Section VII reports on our evalu-
ation of PicoXOM, Section VIII discusses related work, and
Section IX concludes the paper and discusses future work.

II. BACKGROUND

PicoXOM targets ARMv7-M and ARMv8-M architectures,
which cover a wide range of embedded devices on the market,
and it leverages unique features of these architectures. This
section provides important background material on the in-
struction sets, execution modes, address space layout, memory
protection mechanisms, and on-chip debug support found in
ARMv7-M and ARMv8-M.
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Fig. 1. Memory Layout of ARMv7-M and ARMv8-M Architectures

A. Instruction Sets and Execution Modes

ARMv7-M [4] and ARMv8-M [5] are the mainstream M-
profile ARM architectures for embedded microcontrollers.
Unlike ARM’s A and R profiles, they only support the Thumb
instruction set which is a mixture of 16-bit and 32-bit densely-
encoded Thumb instructions.

ARMv7-M [4] supports two execution modes: unprivileged
mode and privileged mode. An ARMv7-M processor always
executes exception handlers in privileged mode, while ap-
plication code is allowed to execute in either mode. Code
running in unprivileged mode can raise the current execution
mode to privileged mode using a supervisor call instruction
(SVC). This is typically how ARMv7-M realizes system calls.
However, embedded applications usually run in privileged
mode to reduce the cost of system calls.

ARMv8-M inherits all the features of ARMv7-M and adds
a security extension called TrustZone-M [5] that isolates
software into a secure world and a non-secure world; this
effectively doubles the execution modes as software can be
executing in either world, privileged or unprivileged.

B. Address Space Layout

Both ARMv7-M [4] and ARMv8-M [5] architectures oper-
ate on a single 32-bit physical address space and use memory-
mapped I/O to access external devices and peripherals. As
Figure 1 shows, the address space is generally divided into
eight consecutive 512 MB regions; the Code region maps
flash memory/ROM that contains code and read-only data,
the SRAM region typically contains heaps and stacks, and
the System region holds memory-mapped system registers
including a Private Peripheral Bus (PPB) subregion. The PPB
subregion contains all critical system registers such as MPU
configuration registers and the Vector Table Offset Register
VTOR. All other regions are for memory-mapped peripherals
and external devices. Note that ARMv7-M and ARMv8-M
do not have special privileged instructions to access system
registers mapped in the System region; instead, they can be
modified by regular load and store instructions.

C. Memory Protection Unit

ARMv7-M and ARMv8-M devices do not have a memory
management unit (MMU) that supports virtual memory; in-
stead, they support an optional MPU that can be configured to
enforce region-based access control on physical memory [4],
[5]. A typical ARMv7-M device supports up to 8 MPU
regions, each of which is configurable with a base address, a
power-of-two size from 32 bytes to 4 GB, and separate access

permissions (R, W, and X) for privileged and unprivileged
modes. With TrustZone-M, ARMv8-M has separate MPU
configurations for secure and non-secure worlds [5]. MPU
configuration registers are in the PPB region.

There are, however, limitations on how one can configure
access permissions for an MPU region. First, the privileged
access permission cannot be more restrictive than the unpriv-
ileged one; this prohibits an MPU region with, for exam-
ple, unprivileged read-write and privileged read-only permis-
sions. Second, the PPB region is always privileged-accessible,
unprivileged-inaccessible, and non-executable regardless of
the MPU configuration. Third, and most importantly, the
MPU does not have the execute-only permission necessary
to support XOM; an MPU region is executable only if it is
configured as both readable and executable.

D. Debug Support

Debug support is another processor feature that ARMv7-
M and ARMv8-M devices can optionally support. Of all
components in the architecture’s debug support, we focus on
the DWT unit [4], [5] which provides groups of debug registers
called DWT comparators that support instruction/data address
matching, PC value tracing, cycle counters, and many other
functionalities. Most importantly, a DWT comparator enables
monitoring of read accesses over a specified address range;
if the processor reads from or writes to an address within a
specified range, the DWT comparator will halt the software
execution or generate a debug monitor exception. If, instead,
the access does not fall into the specified range, execution
proceeds as normal, and performance is unaffected. When
multiple DWT comparators are configured for data address
range matching, an access that hits any of them will trap.

On ARMv7-M, a DWT comparator can be configured to
match an address range by programming its base address with
a mask that specifies a power-of-two range size [4]. ARMv8-
M implements DWT address range matching by using two
consecutively numbered DWT comparators [5], where the first
one specifies the lower bound of the address range and the
second one specifies the upper bound.

III. THREAT MODEL AND SYSTEM ASSUMPTIONS

We assume a buggy but unmalicious application running
on an embedded device with memory safety vulnerabilities
that allow a remote attacker to read or write arbitrary memory
locations. The attacker wants to either steal proprietary ap-
plication code for purposes like reverse engineering or learn
the application code layout in order to launch code reuse
attacks such as Return-into-libc [42] and Return-Oriented
Programming (ROP) [35] attacks. Physical and offline attacks
are out of scope as we believe such attacks can be stopped by
orthogonal defenses [24], [36]. Our threat model also assumes
the application code and data is diversified, using techniques
such as those in EPOXY [13]. Therefore, remotely tricking
the buggy application into reading its code content becomes a
reasonable choice for the attacker.
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We assume that the target embedded device supports MPU
and DWT with enough configurable MPU regions and DWT
comparators. We assume that the device is running a single
bare-metal application statically linked with libraries, boot se-
quences, and exception handlers. The application is assumed to
run in privileged mode, as Section II-A dictates. For ARMv8-
M devices with TrustZone-M, the application is assumed to
reside in the non-secure world, while software in the secure
world is trusted.

IV. DESIGN

Figure 2 shows PicoXOM’s overall design. PicoXOM con-
sists of three components that together implement a strong and
efficient XOM on ARM embedded devices. First, PicoXOM
uses a specially-configured DWT configuration to detect read
accesses to program code. Second, it utilizes a special MPU
configuration that prevents write access to the code region
and prevents writeable memory from being executable. Third,
it employs a small change to the LLVM compiler [27] to
eliminate constant data embedded within the code region.

To use PicoXOM, embedded application developers merely
compile their code with the PicoXOM compiler and install it
on their embedded ARM device. On boot, the PicoXOM run-
time configures MPU regions and DWT comparators using
PicoXOM’s MPU and DWT configurations and then passes
control to the compiled embedded software.

A. W⊕X with MPU

PicoXOM requires that memory either be writeable or
executable but not both i.e., the W⊕X policy [31]; otherwise,
an attacker could simply inject code or overwrite code to
achieve arbitrary code execution. To enforce W⊕X, PicoXOM
configures the MPU regions at device boot time so that the
code region is readable and executable, read-only data is
read-only, and RAM regions are readable and writable. Note
that the MPU cannot configure memory to be executable
but unreadable; the MPU can configure a memory region as
executable only if it is also configured as readable [4], [5].

PicoXOM runs application code in privileged mode and
configures a background MPU region to allow read and write
access to the remainder of the address space such as periph-
erals. This, however, leaves critical memory-mapped system
registers in the PPB (such as MPU configuration registers
and VTOR) open to modifications, which can be leveraged

by an attacker to turn off MPU protections or, even worse,
implant a custom exception handler. Section IV-B discusses
how PicoXOM prevents such cases.

B. R⊕X with DWT

PicoXOM leverages ARM’s DWT comparators to watch
over the whole code region for read accesses. As Section II-D
states, each (pair) of DWT comparators available on an ARM
microcontroller can be configured to generate a debug monitor
exception when a memory access of a specified type to an
address within a specified range occurs. PicoXOM therefore
uses one (pair) of the available DWT comparators as follows:

1) At device boot time, PicoXOM configures a DWT com-
parator register (say DWT_COMP<n>) to hold the lower
bound of the code region.

2) PicoXOM then sets the address-matching range by ei-
ther writing the upper bound of the code region to
the next DWT comparator register DWT_COMP<n+1>
(for ARMv8-M) or writing the correct mask to the
corresponding DWT mask register DWT_MASK<n> (for
ARMv7-M).

3) PicoXOM enables the DWT comparator (pair) by con-
figuring the DWT function register DWT_FUNC<n>
for data address reads. For ARMv8-M devices,
DWT_FUNC<n+1> is also configured in order to form
address range matching.

4) Finally, PicoXOM enables the debug monitor exception
by setting the MON_EN bit (bit 16) of the Debug Excep-
tion and Monitor Control Register DEMCR.

With a DWT comparator (pair) set up for monitoring read
accesses to the code region, R⊕X is effectively enforced.
However, as Section IV-A stated, the DWT registers and
DEMCR are also memory-mapped system registers which could
be modified by vulnerable application code. An attacker could
leverage a buffer overflow vulnerability to reconfigure the
debug registers to neutralize PicoXOM.

We can address the issue in two ways. One approach is
to break the assumption that PicoXOM runs everything in
privileged mode. As code running in unprivileged mode has no
access to the PPB region regardless of the MPU configuration,
the system registers that PicoXOM must protect (e.g., MPU
configuration registers, DWT registers, DEMCR, and VTOR) are
all in the PPB region and therefore inherently safe from unpriv-
ileged tampering. However, this approach requires PicoXOM
to implement system calls that support privileged operations
which application code could previously perform, incurring
expensive context switching between privilege modes. The
other approach is to use extra (pairs of) DWT comparators
to prevent writes to critical system registers. For example,
on ARMv7-M, we can configure one DWT comparator to
write-protect the System Control Block SCB (0xE000ED00
– 0xE000ED8F) and DEMCR (0xE000EDFC) by setting the
lower bound and the size to 0xE000ED00 and 256 bytes,
respectively. Since MPU configuration registers are in the
SCB, they are protected as well. DWT registers on ARMv7-M
reside in a separate range (0xE0001000 – 0xE0001FFF),



ldr r0,=L
...

L: .word 0x12345678

movw r0,#0x5678
movt r0,#0x1234
...

Fig. 3. Constant Island Removal of a Load Constant

tbb [pc,r2]
L0: .byte (L1-L0)/2

.byte (L2-L0)/2

.byte (L3-L0)/2

...
L1: ...
L2: ...
L3: ...

...

adr.w r1,=L0
add.w r1,r1,r2,lsl #2
; indirect jump
mov pc,r1

L0: b.w L1
b.w L2
b.w L3
...

Fig. 4. Constant Island Removal of a Jump-Table Jump

so we can use another DWT comparator to write-protect that
range.

C. Constant Island Removal

By default, ARM compilers generate code that has con-
stant data embedded in the code region (so-called “constant
islands”). Since PicoXOM prevents the code from reading
these constant islands, these programs will fail to execute
when used with PicoXOM. PicoXOM therefore transforms
these programs so that all data within the program is stored
outside of the code region.

We have identified two cases of constant islands generated
by LLVM’s ARM code generator: load constants and jump-
table jumps. Figures 3 and 4 show examples of the two
cases, respectively, as well as their corresponding execute-only
versions to which PicoXOM transforms them. Specifically, in
the left part of Figure 3, a load constant instruction loads a
constant from a PC-relative memory location L into register
r0. Such instructions are usually generated to quickly load an
irregular constant in light of the limited immediate encoding
scheme of the Thumb instruction set [4], [5]. PicoXOM trans-
forms such load constants into MOVW and MOVT instructions
that encode the 32-bit constant in two 16-bit immediates, as
the right part of Figure 3 shows. Jump-table jump instructions
(TBB and TBH) [4], [5] are used to implement large switch
statements; the second register operand (r2 in Figure 4) serves
as an index into a jump table pointed to by the first register
operand (pc in Figure 4), and a byte/half-word offset is loaded
from the jump table to add to the program counter (pc) to
calculate the target of the jump. Optimizing compilers like
GCC and LLVM usually select pc as the first register operand
in order to reduce register pressure, forcing the jump table
to be located next to the jump-table jump itself. PicoXOM
transforms such jump-table jumps into instruction sequences
like that shown in the right part of Figure 4; it encodes
the original jump table’s contents into a sequence of branch
instructions and expands the jump-table jump into a few
explicit instructions that calculate which branch instruction to
jump to and perform an indirect jump.

D. Return Address Nullification

Since the code segment is no longer readable, attackers
cannot use buffer overread attacks [41] to read out the contents
of the code memory to determine where reusable code is
located. However, there may still be control data i.e., pointers
into the code segment, sitting within readable data memory.
Examples of control data are return addresses and function
pointers. Attackers can use a buffer overread to leak control
data to learn where code has been located and to rule out
possible locations for brute-force attacks [?].

To mitigate such attacks, PicoXOM adds code before every
function return that overwrites the return address stored on
the stack with a zero; we call this new transformation Return
Address Nullification. Return Address Nullification provides
two key benefits. First, it limits the number of return addresses
that a single buffer overread can leak. Specifically, a buffer
overread can only leak the return addresses of actively execut-
ing functions i.e., if a buffer overread exists in a function foo,
the buffer overread can only leak return addresses pointing into
functions that are predecessors of foo() in the call graph.
Second, Return Address Nullification allows program analysis
to quantify the amount of code addresses that can be leaked
by one or more buffer overreads, providing a way to quantify
the danger posed by control data leakage attacks. We use this
feature to measure the danger that code leakage attacks pose
to PicoXOM in Section V-D.

V. CODE RANDOMIZATION

To protect software from code reuse attacks, PicoXOM
randomizes the code before it is installed on the board; if
the same software is deployed on many boards, each board
will be running a variant with a different code layout. Due
to memory constraints, PicoXOM does not re-randomize the
code on boot or during operation. PicoXOM’s XOM feature
prevents buffer overreads [41] from reading the code segment.
However, PicoXOM’s XOM feature will be useless if attackers
can simply guess the location of reusable code within a
reasonable amount of time. The limited memory resources
on ARMv7-M systems exacerbate this problem. The lack of
an MMU [4] reduces the size of the usable address space to
what is available in physical memory. Our evaluation board
only has 2 MB of memory for code [40], limiting the number
of options for code diversity. We therefore model brute force
attacks on code randomization schemes and devise methods
to make PicoXOM resistant against them.

A. Model of Brute Force Attacks

For our analysis, we model a simple code reuse attack in
which an attacker attempts to call a single function within
the program with no arguments (similar to a return to libc
attack [42], but the function can be any function within the
application code or libraries). We model this attack as it is the
simplest viable attack that requires the attacker to guess the
least amount of information about the code. If PicoXOM can
resist such an attack, it should also be able to resist more
sophisticated attacks (such as return-oriented programming



(ROP) attacks [35]) that require guessing several pieces of
information about the application.

We assume that the application has a buffer overflow that
the attacker can use to corrupt control data (such as a return
address or function pointer). Without knowing how the code
has been randomized, the attacker will merely guess the
location of the desired function, exploit the buffer overflow,
and see if the attack succeeds. We assume that a successful
attack is easily observed by the attacker. We also assume that
unsuccessful attacks will cause a trap; PicoXOM will restart
the system when the trap occurs.

B. Randomization Schemes

We modeled three types of code layout randomization
that PicoXOM could deploy: function layout randomization,
basic block layout randomzation, and cluster randomization.
Function layout randomization chooses random locations for
each function within the code memory. The code for each
function remains contiguous, and the instructions within each
function appear in the same order. Trap instructions are placed
anywhere within the code memory region in which a function
is not placed.

Basic block layout randomization chooses a random lo-
cation for each basic block. The transformation is inter-
procedural: a function’s basic blocks do not (and most likely
will not) be located contiguously within memory. As some
basic blocks do not end with a branch instruction (because
control flow “falls through” to the subsequent basic block in
memory), our analysis considers the extra branch instructions
that the compiler would need when a function’s basic blocks
will no longer be contiguous. Again, trap instructions are
placed anywhere in memory where no code from the program
resides.

Cluster randomization is a variation of basic block layout
randomization. The difference is that it avoids adding jump
instructions by grouping basic blocks into cluster. A cluster
is a set of basic blocks in which control flow “falls through”
from predecessor basic blocks to successor basic blocks. By
grouping code into clusters, cluster randomization is identical
to basic block layout randomization, but it does not add any
branch instructions to the code.

C. Randomization Model Results

To study the amount of randomization feasible using Pi-
coXOM, we extended the LLVM code generator to measure
the number of different places a function, a basic block, and a
basic block cluster can be placed within a 2 MB code memory
region. If T is the total size of the memory in which code can
be located (2 MB in our system), and if c is the largest unit
of code that can be individually reordered (a function, basic
block, or basic block cluster, respectively), then the maximum
number l of locations in which a function can be placed is

l = T − c (1)

TABLE I
RANDOMIZATION RESULTS FOR BEEBS

Function Basic Block Cluster
Layouts Layouts Layouts

aha-compress 2,092,550 2,096,274 None
aha-mont64 2,092,550 2,096,274 None
bubblesort 2,092,550 2,096,274 None
crc32 2,092,550 2,096,274 None
ctl-string 2,092,550 2,096,274 None
ctl-vector 2,092,550 2,096,274 None
dijkstra 2,092,550 2,096,274 None
dtoa 2,092,208 2,096,274 None
cubic 2,092,550 2,096,274 None
edn 2,092,550 2,096,274 None
fasta 2,092,550 2,096,274 None
fir 2,092,550 2,096,274 None
frac 2,092,550 2,096,274 None
huffbench 2,092,550 2,096,274 None
levenshtein 2,092,550 2,096,274 None
matmult-float 2,092,550 2,096,274 None
matmult-int 2,092,550 2,096,274 None
mergesort 2,092,550 2,096,274 None
nbody 2,092,550 2,096,274 None
ndes 2,092,550 2,096,274 None
nettle-aes 2,092,550 2,096,274 None
nettle-arcfour 2,092,550 2,096,274 None
picojpeg 2,092,550 2,096,274 None
qrduino 2,092,428 2,096,274 None
rijndael 2,092,550 2,095,068 None
sglib-arraybinsearch 2,092,550 2,096,274 None
sglib-arrayheapsort 2,092,550 2,096,274 None
sglib-arrayquicksort 2,092,550 2,096,274 None
sglib-dllist 2,092,550 2,096,274 None
sglib-hashtable 2,092,550 2,096,274 None
sglib-listinsertsort 2,092,550 2,096,274 None
sglib-listsort 2,092,550 2,096,274 None
sglib-queue 2,092,550 2,096,274 None
sglib-rbtree 2,092,550 2,096,274 None
slre 2,092,550 2,096,274 None
sqrt 2,092,550 2,096,274 None
st 2,092,550 2,096,274 None
stb perlin 2,092,550 2,096,274 None
trio-snprintf 2,092,550 2,096,274 None
trio-sscanf 2,092,550 2,096,274 None
whetstone 2,092,550 2,096,274 None
wikisort 2,092,550 2,096,274 None

TABLE II
RANDOMIZATION RESULTS FOR COREMARK-PRO

Function Basic Block Cluster
Layouts Layouts Layouts

cjpeg-rose7-preset 2,092,258 2,096,274 None
core 2,092,550 2,096,274 None
linear alg-mid-100x100-sp 2,092,550 2,096,274 None
loops-all-mid-10k-sp 2,092,550 2,096,274 None
nnet test 2,092,550 2,096,274 None
parser-125k 2,092,550 2,096,274 None
radix2-big-64k 2,092,550 2,096,274 None
sha-test 2,090,288 2,090,288 None
zip-test 2,091,362 2,096,274 None



TABLE III
RANDOMIZATION RESULTS FOR APPLICATIONS

Function Basic Block Cluster
Layouts Layouts Layouts

pinlock 2,092,258 2,096,148 None
fatfs ram 2,092,550 2,096,274 None
fatfs usd 2,092,550 2,096,274 None
lcd animation 2,092,550 2,095,966 None
lcd usd 2,092,550 2,095,966 None

Our analysis pass is executed during code generation at link-
time, so functions and basic blocks from different compilation
units can be reordered. Tables I, II, and III show the results.

Our first observation is that the number of locations for the
beginning of a function is too few to offer protection against
brute force attacks. As Table I shows, the greatest number
of locations is 2, 096, 274 when basic block randomization
is employed. If a single attack attempt (a “probe”) takes
3 milliseconds (ms), then trying every possible location in
crc32 will take a mere 1.7 hours. In order to make the
randomization effective, we must increase the amount of time
of each probe so that, collectively, the time needed to probe the
system to guess the location of the code to reuse is sufficiently
high.

Our second observation is that randomized function layout
is nearly as effective as randomizing the layout of basic blocks
and basic block clusters. As Table II shows, the smallest
number of code locations is 2, 090, 288 using randomized
function layout on CoreMark-Pro’s sha-test. Using probes
that take 3 ms, the maximum time to brute-force an attack is
also 1.7 hours.

To make randomization practical, PicoXOM uses function
randomization to randomize the layout of code. Additionally,
the PicoXOM boot code for the device adds an artificial delay
to boot; this delay starts at 1 ms. PicoXOM modifies the
trap handler so that a reboot due to a crash (for example, by
execution of a trap instruction within the empy areas of the
code memory) doubles the delay time up to a maximum of
30 seconds. This delay ensures that it will take the attacker at
least a year to brute-force her way into a PicoXOM-protected
system.

D. Control Data Leakage Model Results

A control data leakage attack is an attack in which a buffer
overread [41] is used to leak a pointer to the code segment
to an attacker [?]; examples of such control data are return
addresses and function pointers. Attackers can use such leaks
in two ways. First, a leaked control data value may allow an
attacker to directly infer the location of a specific piece of
code that the attacker wishes to use in a code reuse attack.
For example, if the location of functions is randomized within
the code memory, leaking a return address located within a
function allows the attacker to compute that function’s start
address. Second, if a buffer overread cannot leak control data
pointing into a function for which the attacker is searching, it

TABLE IV
CONTROL DATA LEAKAGE RESULTS FOR BEEBS

Maximum Leak Function Layouts

aha-compress 4 2,087,808
aha-mont64 4 2,087,808
bubblesort 4 2,087,808
crc32 4 2,087,808
ctl-string 4 2,087,808
ctl-vector 4 2,087,808
dijkstra 4 2,087,808
dtoa 5 2,086,556
cubic 4 2,087,808
edn 4 2,087,808
fasta 4 2,087,808
fir 4 2,087,808
frac 4 2,087,808
huffbench 4 2,087,808
levenshtein 4 2,087,808
matmult-float 4 2,087,808
matmult-int 4 2,087,808
mergesort 4 2,087,808
nbody 4 2,087,808
ndes 4 2,087,808
nettle-aes 4 2,087,808
nettle-arcfour 4 2,087,808
picojpeg 6 2,087,240
qrduino 4 2,085,800
rijndael 4 2,085,820
sglib-arraybinsearch 4 2,087,808
sglib-arrayheapsort 4 2,087,808
sglib-arrayquicksort 4 2,087,808
sglib-dllist 4 2,087,808
sglib-hashtable 5 2,087,808
sglib-listinsertsort 4 2,087,808
sglib-listsort 4 2,087,808
sglib-queue 4 2,087,808
sglib-rbtree 4 2,087,808
slre 5 2,087,808
sqrt 4 2,087,808
st 4 2,087,808
stb perlin 4 2,087,808
trio-snprintf 6 2,087,808
trio-sscanf 6 2,087,808
whetstone 4 2,087,808
wikisort 4 2,087,808

TABLE V
CONTROL DATA LEAKAGE RESULTS FOR COREMARK-PRO

Maximum Leak Function Layouts

cjpeg-rose7-preset 7 2,087,364
core 5 2,087,808
linear alg-mid-100x100-sp 6 2,087,808
loops-all-mid-10k-sp 6 2,087,808
nnet test 6 2,087,808
parser-125k 7 2,087,536
radix2-big-64k 6 2,087,808
sha-test 5 2,083,024
zip-test 6 2,080,794

will eliminate the possible set of locations to use in a brute-
force attack. By learning the locations of other functions, the
attacker can rule out locations for the function for which she
is searching.

We first evaluated how many return addresses can be leaked
by a single buffer overread. As Section IV-D explains, when



TABLE VI
CONTROL DATA LEAKAGE RESULTS FOR APPLICATIONS

Maximum Leak Function Layouts

pinlock 4 2,087,316
fatfs ram 7 2,085,836
fatfs usd 7 2,085,910
lcd animation 8 2,087,808
lcd usd 8 2,087,808

Algorithm 1 Find All Paths Algorithm
1: PathSet: Set of paths within call graph
2:
3: function FINDALLPATHS(Start,Path,Visited)
4: if Start has no children then
5: PathSet ← PathSet ∪ Path
6: return
7: end if
8:
9: for all Children child of Start do

10: if child ∩ Visited = ∅ then
11: Visited ← Visited ∪ child
12: Path ← Path + Start
13: FindAllPaths (child,Path,Visited)
14: Path ← Path - Start
15: Visited ← Visited - child
16: else
17: PathSet ← PathSet ∪ Path
18: return
19: end if
20: end for
21: end function

Return Address Nullification is used, a buffer overread can
only leak the return address of active functions i.e., functions
that are predecessors in the program’s call graph. We therefore
built an analysis into the PicoXOM code generator. This
analysis, shown in Algorithm 1, creates a list of all paths
through the call graph. Each path either terminates at a leaf
function i.e., a function that calls no other functions, at a
function that is part of an external library, or at the first
function that is called again as part of a set of recursively
called functions. A buffer overread in the last function of the
longest path can leak the most return addresses.

We ran this analysis on our benchmark programs; the second
column entitled Maximum Leak in Tables IV, V, and VI
show our results. As our results show, with Return Address
Nullification employed, the length of the longest path in the
call graph for our embedded applications is small with a
minimum of 4 and a maximum of 8.

To evaluate the amount of entropy lost when buffer over-
reads leak return addresses, we enhanced the above analysis
to calculate the amount of native code that can be located in
each path through the call graph if there is a buffer overread in
the last function of each path. Our analysis uses Algorithm 2
to determine the largest number of code locations that can be

Algorithm 2 Compute Maximum Code Leak Algorithm
1: PathSet: Set of paths within call graph
2: FuncSize: Size of function computed by code generator
3:
4: function CONTROLDATALEAK(PathSet)
5: MaxLeakSize ← 0
6: for all Paths path in PathSet do
7: LeakSize ← 0
8: for all Functions f in path do
9: LeakSize ← LeakSize + FuncSize[f]

10: end for
11: if LeakSize > MaxLeakSize then
12: MaxLeakSize ← LeakSize
13: end if
14: end for
15:
16: return MaxLeakSize
17: end function

determined using a single buffer overread. If T is the total
amount of code memory on a system, f is the size of the
largest function within the program, and l is the largest amount
of code locations leaked through a buffer overread, then the
minimum number of code locations p that need to be probed
in a brute-force attack is

p = T − (f + l) (2)

Algorithm 2 therefore scans through the list of paths to
determine which path can leak the most code if there is a
buffer overread in the last function of the path.

The third column of Tables IV, V, and VI entitled Function
Layouts shows the minimum number of code locations that
need to be probed for each of our benchmark programs. As
our results show, there are at least 2 million locations at which
a function can be located even if a single buffer overread leaks
the maximum number of return addresses possible. If a leaked
return address does not reveal the location of the attacker’s
desired function, the attacker must still probe 2 million loca-
tions. With probes taking 3 ms, that will take about 1.6 hours
(compared to 1.7 hours if no return addresses are leaked at all).
We conclude that our method of delaying reboot when probes
fail still suffices even when return addresses are leaked.

VI. IMPLEMENTATION

We built our PicoXOM prototype for the ARMv7-M archi-
tecture. Our prototype provides MPU and DWT configurations
as a run-time component written in C and executed at the
end of the device boot sequence. We implemented constant
island removal as a simple intermediate representation (IR)
pass in the LLVM 10.0 compiler [27]. The constant island
removal pass simply uses the existing -mexecute-only
option in LLVM’s Clang front-end and passes it along to the
link-time optimization (LTO) code generator. Our prototype
runs the constant island removal pass when linking the IR of



the application, libraries (e.g., newlib and compiler-rt), and
MPU and DWT configurations; this ensures that all code has
no constant islands. Our prototype adds 88 source lines of
C++ code to LLVM and has 177 source lines of C code in the
PicoXOM run-time. We leave the PicoXOM implementation
on ARMv8-M for future work.

Different ARM microcontrollers support different numbers
of MPU regions and DWT comparators, and the maximum
ranges of their DWT comparators may vary. Our prototype
runs on an STM32F469 Discovery board which supports up
to 8 MPU regions [39] and 4 DWT comparators [40]. Each
DWT comparator can only watch over a maximum address
range of 32 KB (a maximal mask value of 15), limiting our
prototype to the following two options:

1) Use all 4 DWT comparators to support a maximum code
size of 128 KB; the application must run in unprivileged mode
in order for the critical system registers to be write-protected.

2) Configure one DWT comparator to write-protect the
DWT registers (0xE0001000 – 0xE0001FFF) and another
to write-protect the SCB (0xE000ED00 – 0xE000ED8F)
and DEMCR (0xE000EDFC). This protects a maximum code
size of 64 KB using the remaining 2 DWT comparators.

To accommodate a wider range of applications on our
board with less performance loss, our prototype automatically
chooses one option over the other based on the application
code size. It rejects an application if the code size exceeds
our board’s 128 KB limit.

While our PicoXOM prototype only supports single bare-
metal embedded applications, PicoXOM can also support mul-
tiple applications running on an embedded real-time operating
system (RTOS) such as Amazon FreeRTOS [3]. On embedded
systems, the application and RTOS kernel code is linked into
a single shared code segment. PicoXOM can protect this code
segment with little adaptation.

VII. EVALUATION

We evaluated PicoXOM on our STM32F469 Discovery
board [40] which has an ARM Cortex-M4 processor imple-
menting the ARMv7-M architecture that can run as fast as
180 MHz. The board comes with 2 MB of flash memory,
384 KB of SRAM, and 16 MB of SDRAM, and has an LCD
screen and a microSD card slot. We configured the board to
run at its fastest speed to understand the maximum impact that
PicoXOM can incur on performance.

To evaluate PicoXOM’s performance and code size over-
head, we used the BEEBS [30] and CoreMark-Pro [16]
benchmark suites and five embedded applications (FatFs-
RAM, FatFs-uSD, LCD-Animation, LCD-uSD, and PinLock).
BEEBS targets energy consumption measurement for em-
bedded platforms and is widely used in evaluating embed-
ded systems including uXOM [26], the state-of-the-art XOM
implementation on ARM microcontrollers. It consists of a
wide range of programs characterizing different workloads
seen on embedded systems, including AES encryption, data
compression, and matrix multiplication. Of all 80 benchmarks
in BEEBS, we picked 42 benchmarks that have an execution

TABLE VII
PERFORMANCE OVERHEAD ON BEEBS

Baseline PicoXOM Baseline PicoXOM
(ms) (×) (ms) (×)

aha-compress 821 1.0000 nettle-arcfour 814 1.0000
aha-mont64 856 0.9988 picojpeg 43,864 1.0027
bubblesort 4,392 1.0000 qrduino 40,877 1.0030
crc32 956 1.0000 rijndael 70,024 1.0018
ctl-string 630 1.0000 sglib-arraybin... 808 1.0000
ctl-vector 786 0.9987 sglib-arrayhea... 1,039 1.0000
cubic 35,140 1.0005 sglib-arrayqui... 735 1.0000
dijkstra 36,582 1.0000 sglib-dllist 1,800 1.0000
dtoa 631 1.0127 sglib-hashtable 1,302 1.0000
edn 3,167 1.0003 sglib-listinsert... 2,030 1.0000
fasta 16,900 0.9999 sglib-listsort 1,265 1.0008
fir 16,048 1.0000 sglib-queue 1,177 1.0000
frac 5,858 1.0323 sglib-rbtree 4,808 1.0025
huffbench 20,682 0.9995 slre 2,761 0.9873
levenshtein 2,685 1.0000 sqrt 38,506 1.0748
matmult-float 1,150 0.9991 st 20,906 1.0252
matmult-int 4,532 1.0000 stb perlin 5,132 1.0306
mergesort 24,353 1.0062 trio-snprintf 697 1.0100
nbody 128,126 1.0090 trio-sscanf 1,064 0.9915
ndes 2,039 0.9995 whetstone 112,754 1.0092
nettle-aes 5,687 0.9998 wikisort 113,195 1.0008

Min (×) 0.9873
Max (×) 1.0748
Geomean (×) 1.0046

time longer than 500 milliseconds when executed for 10,240
iterations. CoreMark-Pro is a processor benchmark suite
that works on both high-performance processors and low-
end microcontrollers, featuring five integer benchmarks (e.g.,
JPEG image compression, XML parser, and SHA-256) and
four floating-point benchmarks (e.g., fast Fourier transform
and neural network) that stress the CPU and memory. FatFs-
RAM and FatFs-uSD operate a FAT file system on SDRAM
and an SD card, respectively. LCD-Animation displays a
single animated picture loaded from an SD card. LCD-uSD
displays multiple static pictures from an SD card with fading
transitions. PinLock simulates a smart lock reading user input
from a serial port and deciding whether to unlock (send an I/O
signal) based on whether the SHA-256 hashed input matches a
precomputed hash. The above five applications represent real-
world use cases of embedded devices and were also used to
evaluate previous work [2], [12], [13].

We used the LLVM compiler infrastructure [27] to compile
benchmarks and applications into the default non-XO format,
with MPU and DWT disabled; this is our baseline. We then
used PicoXOM’s configuration, i.e. enabling MPU, DWT, and
constant island removal. Note that with PicoXOM, none of the
benchmarks and applications exceeds the code size limitation
(128 KB) on our board. Only cjpeg-rose7-preset in
CoreMark-Pro has a code size larger than 64 KB and thereby
has to run in unprivileged mode; nevertheless, it does not
require source code modifications as it does not perform
privileged operations.

A. Performance

We measured PicoXOM’s performance on our benchmarks
and applications. We configured each BEEBS benchmark to
print the time, in milliseconds, for executing its workload
10,240 times. We ran each BEEBS benchmark 10 times



TABLE VIII
PERFORMANCE OVERHEAD ON COREMARK-PRO

Baseline PicoXOM Baseline PicoXOM
(ms) (×) (ms) (×)

cjpeg-rose7-... 10,200 1.0001 parser-125k 12,363 1.0012
core 83,160 0.9918 radix2-big-64k 21,955 0.9961
linear alg-... 22,962 1.0000 sha-test 25,463 0.9995
loops-all-... 33,830 0.9995 zip-test 23,227 1.0000
nnet test 282,398 1.0017

Min (×) 0.9918
Max (×) 1.0017
Geomean (×) 0.9989
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Fig. 5. Performance Overhead on Real-World Applications

and report the average execution time. Each CoreMark-Pro
benchmark is pre-programmed to print out the execution time
in a similar way; the difference is that we configure each
benchmark to run a minimal number of iterations so that the
program takes at least 10 seconds to run for each experimental
trial. Again, we ran each benchmark 10 times and report the
average execution time. For the real-world applications, we
ran FatFs-RAM 10 times and report the average execution
time. The other applications exhibit higher variance in their
execution times as they access peripherals like an SD card,
an LCD screen, and a serial port, so we ran them 20 times
and report the average with a standard deviation. All other
programs exhibit a standard deviation of zero.

Tables VII and VIII and Figure 5 present PicoXOM’s
performance on BEEBS, CoreMark-Pro, and the five real-
world applications, respectively; Figure 5 shows baseline
execution time in milliseconds on top of the Baseline bars.
Overall, PicoXOM incurs negligible performance overhead
of 0.33%: 0.46% on BEEBS with a maximum of 7.48%,
−0.11% on CoreMark-Pro with a maximum of 0.17%, and
0.02% on the applications with a maximum of 0.22%. Thirteen
programs exhibit a minor speedup with PicoXOM. We re-ran
our experiments with the MPU and DWT disabled so that the
only change to performance is due to constant island removal
and the alignment of the code segment (the DWT on ARMv7-
M requires the monitored address range to be aligned by its
power-of-two size). In this configuration, we observed the
same speedups, so either constant island removal and/or code
alignment is causing the slight performance improvement.

B. Code Size

We measured the code size of benchmarks and applications
by using the size utility on generated binaries and collecting

TABLE IX
CODE SIZE OVERHEAD ON BEEBS

Baseline PicoXOM Baseline PicoXOM
(bytes) (×) (bytes) (×)

aha-compress 30,164 1.0646 nettle-arcfour 29,988 1.0649
aha-mont64 31,236 1.0624 picojpeg 36,620 1.0599
bubblesort 29,868 1.0650 qrduino 37,228 1.0529
crc32 29,804 1.0654 rijndael 37,460 1.0516
ctl-string 30,668 1.0631 sglib-arraybin... 29,828 1.0654
ctl-vector 30,892 1.0624 sglib-arrayhea... 29,956 1.0651
cubic 42,428 1.0329 sglib-arrayqui... 30,036 1.0649
dijkstra 30,220 1.0644 sglib-dllist 30,364 1.0641
dtoa 36,204 1.0552 sglib-hashtable 30,164 1.0644
edn 30,940 1.0633 sglib-listinsert... 30,052 1.0649
fasta 29,956 1.0650 sglib-listsort 30,100 1.0648
fir 29,884 1.0651 sglib-queue 29,988 1.0650
frac 30,468 1.0626 sglib-rbtree 30,564 1.0639
huffbench 30,988 1.0628 slre 32,284 1.0603
levenshtein 30,140 1.0647 sqrt 30,372 1.0641
matmult-float 30,108 1.0644 st 31,124 1.0602
matmult-int 30,060 1.0650 stb perlin 31,140 1.0627
mergesort 30,852 1.0604 trio-snprintf 33,724 1.0675
nbody 30,684 1.0633 trio-sscanf 34,156 1.0668
ndes 31,028 1.0630 whetstone 40,164 1.0371
nettle-aes 31,756 1.0614 wikisort 34,332 1.0541

Min (×) 1.0329
Max (×) 1.0675
Geomean (×) 1.0614
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the .text segment size.
Table IX and Figure 6 show the baseline code size and the

overhead incurred by PicoXOM on BEEBS, CoreMark-Pro,
and the five real-world applications, respectively. On average,
PicoXOM increases the code size by 6.14% on BEEBS, 4.39%
on CoreMark-Pro, and 6.52% on the real-world applications,
with a 5.89% overall overhead. We studied PicoXOM’s code
size overhead and discovered that constant island removal
caused the majority of the code size overhead, especially for
programs with relatively large code bases like CoreMark-Pro.
In fact, the additional code that sets up the MPU and DWT
only contributes a minor part of the overhead (1.22% and
0.53% on average, respectively).

VIII. RELATED WORK

Two other XOM implementations exist for ARM micro-
controllers. uXOM [26] provides XOM for ARM Cortex-M
systems by transforming loads into special unprivileged load
instructions and configuring the MPU to make the code region
unreadable by unprivileged loads. uXOM similarly transforms
stores to protect the memory-mapped MPU configuration



registers. Since some loads and stores do not have unprivileged
counterparts, transforming them requires the compiler to insert
additional instructions, causing the majority of uXOM’s over-
head. PicoXOM is more efficient in both performance (0.33%
compared to uXOM’s 7.3%) and code size (5.89% compared
to uXOM’s 15.7%) as no such transformation is needed.
A trade-off for PicoXOM is the code size limit on some
ARMv7-M devices; we envision no such limit on ARMv8-M.
PCROP [38] is a programmable feature of the flash memory
which prevents the flash memory from being read out and
modified by application code but still allows code in the flash
memory to execute. However, PCROP is only available on
some STMicroelectronics devices and cannot be used for other
types of memory. In contrast, PicoXOM relies on the MPU and
DWT features [4], [5] which can be found on most conforming
devices and can protect code stored in any type of memory.

Hardware-assisted XOM has been explored on other ar-
chitectures. The AArch64 [6] and RISC-V [34] page tables
natively support XO permissions. NORAX [11] enables XOM
for commercial-off-the-shelf binaries on AArch64 that have
constant islands using static binary instrumentation and run-
time monitoring. Various approaches [9], [14], [18]–[20], [44]
leverage features of the MMU on Intel x86 processors [22]
to implement XOM. None of these approaches are applicable
on ARM embedded devices lacking an MMU. Lie et al. [28]
proposed an architecture with memory encryption to mimic
XOM, but it only provides probabilistic guarantees and cannot
be directly applied to current embedded systems. Compared to
solutions for systems lacking native hardware XOM support,
PicoXOM is faster as it has nearly no overhead.

Software can emulate XOM. XnR [7] maintains a sliding
window of currently executing code pages and keeps only
these pages accessible. It still allows read accesses to a subset
of code pages and may incur higher overhead for a smaller
sliding window size due to frequent page permission changes.
LR2 [8] and kRˆX [33] instrument all load instructions to
prevent them from reading the code segment. While these soft-
ware XOM approaches can generally be ported to embedded
devices, they can be bypassed by attacker-manipulated control
flow and are less efficient than hardware-assisted XOM [26].

There are also methods of hardening embedded sys-
tems. Early versions of SAFECode [15] enforced spatial
and temporal memory safety on embedded applications, and
nesCheck [29] uses static analysis to build spatial mem-
ory safety for simple nesC [17] applications running on
TinyOS [21]. PicoXOM enforces weaker protection than mem-
ory safety but supports arbitrary C programs (unlike SAFE-
Code and nesCheck) and does not rely on heavy static analysis
like nesCheck. RECFISH [43], µRAI [2], and Silhouette [45]
mitigate control-flow hijacking attacks on embedded systems.
They protect forward-edge control flow using coarse-grained
CFI [1] and backward-edge control flow by using either a
protected shadow stack [10] or a return address encoding
mechanism. EPOXY [13] randomizes the order of functions
and the location of a modified safe stack from CPI [25] to
resist control-flow hijacking attacks on bare-metal microcon-

trollers. These systems do not enforce XOM and are still
vulnerable to forward-edge corruptions; they can incorporate
PicoXOM’s techniques to mitigate forward-edge attacks with
negligible additional overhead.

IX. CONCLUSIONS AND FUTURE WORK

This paper presented PicoXOM: a fast and novel XOM
system for ARMv7-M and ARMv8-M devices which leverages
ARM’s MPU and DWT unit. PicoXOM incurs an average
performance overhead of 0.33% and an average code size over-
head of 5.89% on the BEEBS and CoreMark-Pro benchmark
suites and five real-world applications.

In future work, we will investigate techniques to ensure
that randomization techniques utilizing PicoXOM are effective
against brute-force attacks. Embedded systems have limited
code placement options for code layout randomization, mo-
tivating us to investigate whether the entropy is sufficient
and develop techniques to strengthen code randomization
if necessary. We will also explore how to leverage debug
support like DWT to enforce other security policies with low
overhead.
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